Parallelization of Particle-Based Reaction–Diffusion Simulations Using MPI

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sikao Guo, Nenad Korolija, Kent Milfeld, Adip Jhaveri, Mankun Sang, Yue Moon Ying, Margaret E. Johnson
{"title":"Parallelization of Particle-Based Reaction–Diffusion Simulations Using MPI","authors":"Sikao Guo,&nbsp;Nenad Korolija,&nbsp;Kent Milfeld,&nbsp;Adip Jhaveri,&nbsp;Mankun Sang,&nbsp;Yue Moon Ying,&nbsp;Margaret E. Johnson","doi":"10.1002/jcc.70132","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Particle-based reaction–diffusion offers a high-resolution alternative to the continuum reaction–diffusion approach, capturing the volume-excluding nature of molecules undergoing stochastic dynamics. This is essential for simulating self-assembly into higher-order structures like filaments, lattices, or macromolecular complexes. Applications of self-assembly are ubiquitous in chemistry, biology, and materials science, but these higher-resolution methods increase computational cost. Here, we present a parallel implementation of the particle-based NERDSS software using the message passing interface (MPI), achieving close to linear scaling for up to 96 processors. By using a spatial decomposition of the system across processors, our approach extends to very large simulation volumes. The scalability of parallel NERDSS is evaluated for reversible reactions and several examples of higher-order self-assembly in 3D and 2D, with all test cases producing accurate solutions. Parallel efficiency depends on the system size, timescales, and reaction network, showing optimal scaling for smaller assemblies with slower timescales. We provide parallel NERDSS code open-source, supporting development and extension to other particle-based reaction–diffusion software.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 14","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70132","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Particle-based reaction–diffusion offers a high-resolution alternative to the continuum reaction–diffusion approach, capturing the volume-excluding nature of molecules undergoing stochastic dynamics. This is essential for simulating self-assembly into higher-order structures like filaments, lattices, or macromolecular complexes. Applications of self-assembly are ubiquitous in chemistry, biology, and materials science, but these higher-resolution methods increase computational cost. Here, we present a parallel implementation of the particle-based NERDSS software using the message passing interface (MPI), achieving close to linear scaling for up to 96 processors. By using a spatial decomposition of the system across processors, our approach extends to very large simulation volumes. The scalability of parallel NERDSS is evaluated for reversible reactions and several examples of higher-order self-assembly in 3D and 2D, with all test cases producing accurate solutions. Parallel efficiency depends on the system size, timescales, and reaction network, showing optimal scaling for smaller assemblies with slower timescales. We provide parallel NERDSS code open-source, supporting development and extension to other particle-based reaction–diffusion software.

Abstract Image

基于MPI的粒子反应扩散模拟并行化
基于粒子的反应扩散提供了连续反应扩散方法的高分辨率替代方案,捕获了经历随机动力学的分子的体积排除性质。这对于模拟自组装成高阶结构(如细丝、晶格或大分子复合物)是必不可少的。自组装的应用在化学、生物学和材料科学中无处不在,但这些更高分辨率的方法增加了计算成本。在这里,我们提出了一个使用消息传递接口(MPI)的基于粒子的NERDSS软件的并行实现,实现了多达96个处理器的接近线性扩展。通过跨处理器使用系统的空间分解,我们的方法扩展到非常大的模拟量。在可逆反应和3D和2D高阶自组装的几个例子中,对并行NERDSS的可扩展性进行了评估,所有测试用例都产生了准确的解决方案。并行效率取决于系统大小、时间尺度和反应网络,对于时间尺度较慢的较小组件显示最佳缩放。我们提供并行的NERDSS源代码,支持开发和扩展到其他基于粒子的反应扩散软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信