Sikao Guo, Nenad Korolija, Kent Milfeld, Adip Jhaveri, Mankun Sang, Yue Moon Ying, Margaret E. Johnson
{"title":"Parallelization of Particle-Based Reaction–Diffusion Simulations Using MPI","authors":"Sikao Guo, Nenad Korolija, Kent Milfeld, Adip Jhaveri, Mankun Sang, Yue Moon Ying, Margaret E. Johnson","doi":"10.1002/jcc.70132","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Particle-based reaction–diffusion offers a high-resolution alternative to the continuum reaction–diffusion approach, capturing the volume-excluding nature of molecules undergoing stochastic dynamics. This is essential for simulating self-assembly into higher-order structures like filaments, lattices, or macromolecular complexes. Applications of self-assembly are ubiquitous in chemistry, biology, and materials science, but these higher-resolution methods increase computational cost. Here, we present a parallel implementation of the particle-based NERDSS software using the message passing interface (MPI), achieving close to linear scaling for up to 96 processors. By using a spatial decomposition of the system across processors, our approach extends to very large simulation volumes. The scalability of parallel NERDSS is evaluated for reversible reactions and several examples of higher-order self-assembly in 3D and 2D, with all test cases producing accurate solutions. Parallel efficiency depends on the system size, timescales, and reaction network, showing optimal scaling for smaller assemblies with slower timescales. We provide parallel NERDSS code open-source, supporting development and extension to other particle-based reaction–diffusion software.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 14","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70132","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Particle-based reaction–diffusion offers a high-resolution alternative to the continuum reaction–diffusion approach, capturing the volume-excluding nature of molecules undergoing stochastic dynamics. This is essential for simulating self-assembly into higher-order structures like filaments, lattices, or macromolecular complexes. Applications of self-assembly are ubiquitous in chemistry, biology, and materials science, but these higher-resolution methods increase computational cost. Here, we present a parallel implementation of the particle-based NERDSS software using the message passing interface (MPI), achieving close to linear scaling for up to 96 processors. By using a spatial decomposition of the system across processors, our approach extends to very large simulation volumes. The scalability of parallel NERDSS is evaluated for reversible reactions and several examples of higher-order self-assembly in 3D and 2D, with all test cases producing accurate solutions. Parallel efficiency depends on the system size, timescales, and reaction network, showing optimal scaling for smaller assemblies with slower timescales. We provide parallel NERDSS code open-source, supporting development and extension to other particle-based reaction–diffusion software.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.