On almost periodic solutions of the parabolic-elliptic Keller-Segel system on real hyperbolic manifold

IF 1.4 3区 数学 Q1 MATHEMATICS
Tran Van Thuy
{"title":"On almost periodic solutions of the parabolic-elliptic Keller-Segel system on real hyperbolic manifold","authors":"Tran Van Thuy","doi":"10.1007/s13324-025-01073-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we will study the existence, uniqueness and exponential stability of almost periodic solutions to the parabolic-elliptic Keller-Segel system on a real hyperbolic manifold. We clarify the existence and uniqueness of such solutions of the linear equation by utilizing the dispersive and smoothing estimates of the heat semigroup. Thereafter, we use the fixed point arguments to investigate for the case of the semi-linear equation by utilizing the results of the linear case. Finally, we invoke the Gronwall’s inequality to point out the exponential stability.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01073-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we will study the existence, uniqueness and exponential stability of almost periodic solutions to the parabolic-elliptic Keller-Segel system on a real hyperbolic manifold. We clarify the existence and uniqueness of such solutions of the linear equation by utilizing the dispersive and smoothing estimates of the heat semigroup. Thereafter, we use the fixed point arguments to investigate for the case of the semi-linear equation by utilizing the results of the linear case. Finally, we invoke the Gronwall’s inequality to point out the exponential stability.

实数双曲流形上抛物-椭圆Keller-Segel系统的概周期解
本文研究了实数双曲流形上抛物-椭圆型Keller-Segel系统概周期解的存在唯一性和指数稳定性。利用热半群的色散估计和平滑估计,证明了这类线性方程解的存在唯一性。然后,我们利用线性方程的结果,利用不动点参数来研究半线性方程的情况。最后,我们利用Gronwall不等式指出了指数稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信