A. P. Lyulyukin, Yu. V. Dubinin, R. G. Kukushkin, V. A. Yakovlev
{"title":"Development of a Strengthened Al2O3 Based Material for Use in Waste Combustion Plants","authors":"A. P. Lyulyukin, Yu. V. Dubinin, R. G. Kukushkin, V. A. Yakovlev","doi":"10.1134/S2070050424700417","DOIUrl":null,"url":null,"abstract":"<p>Fluidized bed catalytic combustion is the most environmentally friendly and energy-efficient method for converting various fuels, in particular, low-grade fuels. The technology involves the oxidation of volatile substances on the surface of catalyst particles diluted with an inert material in a fluidized bed. The conventional use of quartz sand as an inert material leads to the accelerated degradation of the catalyst during on-stream use due to abrasion. This study is focused on the effect of the magnesium modification of active spherical Al<sub>2</sub>O<sub>3</sub> and the development of a strengthened material (with crushing and abrasion strengths comparable to the values for a deep oxidation catalyst (DOC)) capable of minimizing DOC losses. The modified support is synthesized by impregnating spherical Al<sub>2</sub>O<sub>3</sub> pellets with a precursor solution (nitrate and acetate) and subsequently calcining the pellets at 80°C. The resulting pellets are studied by X-ray fluorescence analysis (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES), low-temperature nitrogen adsorption (BET), and scanning electron microscopy (SEM). In addition, the mechanical strength of the pellets and their catalytic activity in CO oxidation are determined. It is found that the strength characteristics of Al<sub>2</sub>O<sub>3</sub> linearly increase upon the introduction of magnesium in an amount of 2–9 wt %. The use of the selected material under laboratory conditions provides a threefold decrease in catalyst losses during 4.5-h abrasion compared with losses in the case of using quartz sand.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"17 1","pages":"66 - 74"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424700417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluidized bed catalytic combustion is the most environmentally friendly and energy-efficient method for converting various fuels, in particular, low-grade fuels. The technology involves the oxidation of volatile substances on the surface of catalyst particles diluted with an inert material in a fluidized bed. The conventional use of quartz sand as an inert material leads to the accelerated degradation of the catalyst during on-stream use due to abrasion. This study is focused on the effect of the magnesium modification of active spherical Al2O3 and the development of a strengthened material (with crushing and abrasion strengths comparable to the values for a deep oxidation catalyst (DOC)) capable of minimizing DOC losses. The modified support is synthesized by impregnating spherical Al2O3 pellets with a precursor solution (nitrate and acetate) and subsequently calcining the pellets at 80°C. The resulting pellets are studied by X-ray fluorescence analysis (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES), low-temperature nitrogen adsorption (BET), and scanning electron microscopy (SEM). In addition, the mechanical strength of the pellets and their catalytic activity in CO oxidation are determined. It is found that the strength characteristics of Al2O3 linearly increase upon the introduction of magnesium in an amount of 2–9 wt %. The use of the selected material under laboratory conditions provides a threefold decrease in catalyst losses during 4.5-h abrasion compared with losses in the case of using quartz sand.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.