Machine fault diagnosis method using Ghost-AdderNet and WSNs with sensor computing

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Liqun Hou, Guopeng Mao, Ziming Zhang
{"title":"Machine fault diagnosis method using Ghost-AdderNet and WSNs with sensor computing","authors":"Liqun Hou,&nbsp;Guopeng Mao,&nbsp;Ziming Zhang","doi":"10.1016/j.eswa.2025.128157","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a machine fault diagnosis method using AdderNet with Ghost modules (Ghost-AdderNet) and wireless sensor networks (WSNs) with sensor computing. The proposed Ghost-AdderNet is a specially designed lightweight convolutional neural network (CNN) for machine fault diagnosis on resource-constrained WSN sensor nodes. It reduces the model size and computational cost by replacing the multiplication operations in the CNN with additions or subtractions while decreasing the model parameters by using Ghost modules. The proposed fault diagnosis method is verified by embedding and evaluating the designed Ghost-AdderNet on a commercial WSN node, JN5169 from NXP. The results show that, compared with raw data transmission mode, the proposed method can significantly reduce model size and the payload transmission data of WSNs, and save 25.1 mJ (29.1 %) node energy while maintaining acceptable diagnosis accuracy (above 99.6 %).</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"287 ","pages":"Article 128157"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425017774","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a machine fault diagnosis method using AdderNet with Ghost modules (Ghost-AdderNet) and wireless sensor networks (WSNs) with sensor computing. The proposed Ghost-AdderNet is a specially designed lightweight convolutional neural network (CNN) for machine fault diagnosis on resource-constrained WSN sensor nodes. It reduces the model size and computational cost by replacing the multiplication operations in the CNN with additions or subtractions while decreasing the model parameters by using Ghost modules. The proposed fault diagnosis method is verified by embedding and evaluating the designed Ghost-AdderNet on a commercial WSN node, JN5169 from NXP. The results show that, compared with raw data transmission mode, the proposed method can significantly reduce model size and the payload transmission data of WSNs, and save 25.1 mJ (29.1 %) node energy while maintaining acceptable diagnosis accuracy (above 99.6 %).
基于Ghost-AdderNet和传感器计算的WSNs的机器故障诊断方法
本文提出了一种基于AdderNet的Ghost模块(Ghost-AdderNet)和基于传感器计算的无线传感器网络(WSNs)的机器故障诊断方法。本文提出的Ghost-AdderNet是一种特别设计的轻量级卷积神经网络(CNN),用于在资源受限的WSN传感器节点上进行机器故障诊断。它通过使用Ghost模块减少模型参数的同时,用加法或减法代替CNN中的乘法运算,从而减小了模型的尺寸和计算成本。通过在NXP的JN5169商用WSN节点上嵌入和评估所设计的Ghost-AdderNet,验证了所提出的故障诊断方法。结果表明,与原始数据传输方式相比,该方法可以显著减小WSNs的模型尺寸和有效载荷传输数据,在保持可接受的诊断准确率(99.6%以上)的同时,节省25.1 mJ(29.1%)节点能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信