Model-theoretic K1 of free modules over PIDs

IF 0.6 2区 数学 Q2 LOGIC
Sourayan Banerjee, Amit Kuber
{"title":"Model-theoretic K1 of free modules over PIDs","authors":"Sourayan Banerjee,&nbsp;Amit Kuber","doi":"10.1016/j.apal.2025.103613","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by Krajiček and Scanlon's definition of the Grothendieck ring <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> of a first-order structure <em>M</em>, we introduce the definition of <em>K</em>-groups <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> via Quillen's <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>S</mi></math></span> construction. We provide a recipe for the computation of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> is a free module over a PID <em>R</em>, subject to the knowledge of the abelianizations of the general linear groups <span><math><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. As a consequence, we provide explicit computations of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span> when <em>R</em> belongs to a large class of Euclidean domains that includes fields with at least 3 elements and polynomial rings over fields with characteristic 0. We also show that the algebraic <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of a PID <em>R</em> embeds into <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 9","pages":"Article 103613"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000624","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by Krajiček and Scanlon's definition of the Grothendieck ring K0(M) of a first-order structure M, we introduce the definition of K-groups Kn(M) for n0 via Quillen's S1S construction. We provide a recipe for the computation of K1(MR), where MR is a free module over a PID R, subject to the knowledge of the abelianizations of the general linear groups GLn(R). As a consequence, we provide explicit computations of K1(MR) when R belongs to a large class of Euclidean domains that includes fields with at least 3 elements and polynomial rings over fields with characteristic 0. We also show that the algebraic K1 of a PID R embeds into K1(RR).
pid上自由模的模型论K1
基于krajiekk和Scanlon关于一阶结构M的Grothendieck环K0(M)的定义,我们通过Quillen的S−1S构造引入了n≥0时k群Kn(M)的定义。我们提供了K1(MR)的计算公式,其中MR是PID R上的自由模,受一般线性群GLn(R)的阿贝尔化的知识的约束。因此,我们提供了K1(MR)的显式计算,当R属于欧几里得域的一大类,其中包括至少有3个元素的域和特征为0的域上的多项式环。我们还证明了PID R的代数K1嵌入到K1(RR)中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信