{"title":"Adaptive-to-sub-null testing for mediation effects in structural equation models","authors":"Jiaqi Huang , Chuyun Ye , Lixing Zhu","doi":"10.1016/j.csda.2025.108205","DOIUrl":null,"url":null,"abstract":"<div><div>To effectively implement large-scale hypothesis testing of causal mediation effects and control false discovery rate (FDR) for linear structural equation models, this paper proposes an Adaptive-to-Sub-Null test (AtST) tailored specifically for the assessment of multidimensional mediation effects. The significant distinction of AtST from existing methods is that for every mediator, the weak limits of the test statistic under all mutually exclusive sub-null hypotheses uniformly conform to a chi-square distribution with one degree of freedom. Therefore, in the asymptotic sense, the significance level can be maintained and the <em>p</em>-values can be computed easily without any other prior information on the sub-null hypotheses or resampling technique. In theoretical investigations, we extend existing parameter estimation methods by allowing lower sparsity level in high-dimensional covariate vectors. These results offer a solid base for better FDR control by directly applying the classical Storey's method. We also apply a data-driven approach for selecting the tuning parameter of Storey's estimator. Simulations are conducted to demonstrate the efficacy and validity of the AtST, complemented by an analytical exploration of a genuine dataset for illustration.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108205"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
To effectively implement large-scale hypothesis testing of causal mediation effects and control false discovery rate (FDR) for linear structural equation models, this paper proposes an Adaptive-to-Sub-Null test (AtST) tailored specifically for the assessment of multidimensional mediation effects. The significant distinction of AtST from existing methods is that for every mediator, the weak limits of the test statistic under all mutually exclusive sub-null hypotheses uniformly conform to a chi-square distribution with one degree of freedom. Therefore, in the asymptotic sense, the significance level can be maintained and the p-values can be computed easily without any other prior information on the sub-null hypotheses or resampling technique. In theoretical investigations, we extend existing parameter estimation methods by allowing lower sparsity level in high-dimensional covariate vectors. These results offer a solid base for better FDR control by directly applying the classical Storey's method. We also apply a data-driven approach for selecting the tuning parameter of Storey's estimator. Simulations are conducted to demonstrate the efficacy and validity of the AtST, complemented by an analytical exploration of a genuine dataset for illustration.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]