Magnetic wave dynamics in ferromagnetic thin films: Interactions of solitons and positons in Landau–Lifshitz–Gilbert equation

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Riaz Ur Rahman , Zaidong Li , Jingsong He
{"title":"Magnetic wave dynamics in ferromagnetic thin films: Interactions of solitons and positons in Landau–Lifshitz–Gilbert equation","authors":"Riaz Ur Rahman ,&nbsp;Zaidong Li ,&nbsp;Jingsong He","doi":"10.1016/j.physd.2025.134719","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the higher-order soliton and smooth positon solutions derived from the Landau–Lifshitz–Gilbert (LLG) equation which describes the wave propagation in the physical setting of ferromagnetic thin films by adopting the Darboux transformation (DT) technique. The LLG equation is reformulated into an integrable nonlinear Schrödinger-like equation under the long-wave approximation. This approach facilitates the analysis of the propagation and interaction of magnetic solitons and positons within a ferromagnetic thin films, by taking into account the effects of interfacial Dzyaloshinskii–Moriya (DM) interaction. The DM interaction notably influences the soliton and positon velocities, alters their collision positions, and impacts their propagation trajectories. The magnetization dynamics, described by <span><math><mrow><mover><mrow><mi>m</mi></mrow><mo>→</mo></mover><mo>=</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mover><mrow><mi>e</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>y</mi></mrow></msub><msub><mrow><mover><mrow><mi>e</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>y</mi></mrow></msub><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mover><mrow><mi>e</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>z</mi></mrow></msub></mrow></math></span>, exhibits distinct characteristics where <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span> represent oscillations in the plane perpendicular to the external field with breather-like properties, while <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> forms localized magnetized states. The magnetization dynamics are characterized through Bloch sphere trajectories, revealing progressively localized spiral patterns for first- and second-order soliton and positon solutions, indicating enhanced spatial confinement of magnetic moments. Moreover, the dynamic behavior of smooth positons within the NLS-type equation is studied using the decomposition method of the modulus square. This methodology offers an approximate characterization of positon trajectories and the time-dependent “phase shift” occurring after collisions.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"479 ","pages":"Article 134719"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001964","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the higher-order soliton and smooth positon solutions derived from the Landau–Lifshitz–Gilbert (LLG) equation which describes the wave propagation in the physical setting of ferromagnetic thin films by adopting the Darboux transformation (DT) technique. The LLG equation is reformulated into an integrable nonlinear Schrödinger-like equation under the long-wave approximation. This approach facilitates the analysis of the propagation and interaction of magnetic solitons and positons within a ferromagnetic thin films, by taking into account the effects of interfacial Dzyaloshinskii–Moriya (DM) interaction. The DM interaction notably influences the soliton and positon velocities, alters their collision positions, and impacts their propagation trajectories. The magnetization dynamics, described by m=mxex+myey+mzez, exhibits distinct characteristics where mx and my represent oscillations in the plane perpendicular to the external field with breather-like properties, while mz forms localized magnetized states. The magnetization dynamics are characterized through Bloch sphere trajectories, revealing progressively localized spiral patterns for first- and second-order soliton and positon solutions, indicating enhanced spatial confinement of magnetic moments. Moreover, the dynamic behavior of smooth positons within the NLS-type equation is studied using the decomposition method of the modulus square. This methodology offers an approximate characterization of positon trajectories and the time-dependent “phase shift” occurring after collisions.
铁磁薄膜中的磁波动动力学:Landau-Lifshitz-Gilbert方程中孤子和位置的相互作用
本文采用达布变换(DT)技术,研究了描述铁磁薄膜物理环境中波传播的Landau-Lifshitz-Gilbert (LLG)方程的高阶孤子和光滑位置解。在长波近似下,将LLG方程重新表述为可积非线性Schrödinger-like方程。该方法考虑了界面Dzyaloshinskii-Moriya (DM)相互作用的影响,有助于分析铁磁薄膜中磁孤子和位置的传播和相互作用。DM相互作用显著影响孤子和孤子的速度,改变它们的碰撞位置,影响它们的传播轨迹。由m→=mxe→x+mye→y+mze→z描述的磁化动力学表现出明显的特征,其中mx和my表示在垂直于外场的平面上的振荡,具有类似呼吸的性质,而mz则形成局域磁化状态。通过Bloch球轨迹表征了磁化动力学,揭示了一阶和二阶孤子和位置解的逐步定域螺旋模式,表明磁矩的空间约束增强。此外,利用模量平方的分解方法研究了nls型方程中光滑位置的动力学行为。这种方法提供了位置轨迹和碰撞后发生的随时间“相移”的近似表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信