Exploring the chemical space of ionic liquids for CO2 dissolution through generative machine learning models

IF 7.6 Q1 ENGINEERING, CHEMICAL
Xiuxian Chen, Guzhong Chen, Kunchi Xie, Jie Cheng, Jiahui Chen, Zhen Song, Zhiwen Qi
{"title":"Exploring the chemical space of ionic liquids for CO2 dissolution through generative machine learning models","authors":"Xiuxian Chen,&nbsp;Guzhong Chen,&nbsp;Kunchi Xie,&nbsp;Jie Cheng,&nbsp;Jiahui Chen,&nbsp;Zhen Song,&nbsp;Zhiwen Qi","doi":"10.1016/j.gce.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>For discovering uncharted chemical space of ionic liquids (ILs) for CO<sub>2</sub> dissolution, a reliable generative framework combining re-balanced variational autoencoder (VAE), artificial neural network (ANN), and particle swarm optimization (PSO) is developed based on a comprehensive experimental solubility database from literature. The re-balanced VAE transforms the chemical space of ILs into continuous latent space, which is demonstrated by t-distributed stochastic neighbor embedding (t-SNE) visualization and sampled ions of the latent space. ANN is connected with the re-balanced VAE to predict the CO<sub>2</sub> solubility and the resultant VAE-ANN model achieves a low mean absolute error (MAE) of 0.022 on the test set. Lastly, the PSO algorithm is employed to search the latent space for optimal IL structures with the highest predicted solubility. A total of 5120 ILs are generated and optimized through 10 parallel runs of PSO. Their CO<sub>2</sub> solubilities are predicted and compared to those of the 3735 ILs combined with the already-known cations and anions in the CO<sub>2</sub> solubility database under 298.15 K and 100 kPa. The results demonstrate a notably larger distribution of higher CO<sub>2</sub> solubility in optimized ILs after PSO, which effectively points out the significance and directions for exploring the wide IL chemical space.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 3","pages":"Pages 335-343"},"PeriodicalIF":7.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952824000414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For discovering uncharted chemical space of ionic liquids (ILs) for CO2 dissolution, a reliable generative framework combining re-balanced variational autoencoder (VAE), artificial neural network (ANN), and particle swarm optimization (PSO) is developed based on a comprehensive experimental solubility database from literature. The re-balanced VAE transforms the chemical space of ILs into continuous latent space, which is demonstrated by t-distributed stochastic neighbor embedding (t-SNE) visualization and sampled ions of the latent space. ANN is connected with the re-balanced VAE to predict the CO2 solubility and the resultant VAE-ANN model achieves a low mean absolute error (MAE) of 0.022 on the test set. Lastly, the PSO algorithm is employed to search the latent space for optimal IL structures with the highest predicted solubility. A total of 5120 ILs are generated and optimized through 10 parallel runs of PSO. Their CO2 solubilities are predicted and compared to those of the 3735 ILs combined with the already-known cations and anions in the CO2 solubility database under 298.15 K and 100 kPa. The results demonstrate a notably larger distribution of higher CO2 solubility in optimized ILs after PSO, which effectively points out the significance and directions for exploring the wide IL chemical space.

Abstract Image

通过生成式机器学习模型探索离子液体溶解二氧化碳的化学空间
为了发现离子液体(ILs)中CO2溶解的未知化学空间,基于文献中完整的实验溶解度数据库,开发了一种结合再平衡变分自编码器(VAE)、人工神经网络(ANN)和粒子群优化(PSO)的可靠生成框架。重新平衡的VAE将il的化学空间转化为连续的潜在空间,这通过t分布随机邻居嵌入(t-SNE)可视化和潜在空间的采样离子来证明。将人工神经网络与重新平衡的VAE连接起来预测CO2溶解度,得到的人工神经网络-人工神经网络模型在测试集上的平均绝对误差(MAE)为0.022,较低。最后,利用粒子群算法搜索潜在空间,寻找预测溶解度最高的最优IL结构。通过10次PSO并行运行,共生成并优化了5120个il。在298.15 K和100 kPa的条件下,对它们的CO2溶解度进行了预测,并与3735 il结合已知的阳离子和阴离子的CO2溶解度数据库进行了比较。结果表明,PSO后优化后的IL中CO2溶解度较高的分布明显增加,这有效地指出了探索IL化学广阔空间的意义和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信