Quality boost of tabular data synthesis using interpolative cumulative distribution function decoding and type-specific conditioner

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Seungchan Roh, Seunghwan Song, Kwan-Yong Park, Byoung-mo Koo, Jun-Geol Baek
{"title":"Quality boost of tabular data synthesis using interpolative cumulative distribution function decoding and type-specific conditioner","authors":"Seungchan Roh,&nbsp;Seunghwan Song,&nbsp;Kwan-Yong Park,&nbsp;Byoung-mo Koo,&nbsp;Jun-Geol Baek","doi":"10.1016/j.neucom.2025.130484","DOIUrl":null,"url":null,"abstract":"<div><div>Tabular data synthesis is an important research area in terms of privacy and data utilization. To enhance the utilization of tabular data, data synthesis techniques are extensively explored. The primary goal of tabular data synthesis is to generate high-quality data that preserve original insights while reducing the risk of data breaches. In this study, we propose a novel generative adversarial network (GAN) for quality boost of tabular data synthesis. The method of transforming continuous variables and correct conditioning for capturing dependencies between variables is considered a critical factor in determining data quality. Therefore, our proposed method uses interpolative cumulative distribution function (CDF) decoding for continuous columns and type-specific conditioner. Interpolative CDF decoding addresses a limitation of the inverse CDF method that restricts the diversity of synthetic data. In addition, the type-specific conditioner conditions the interdependencies between columns by integrating both discrete and continuous conditions. The introduction of conditional dependencies enables the generator to accurately capture complex dependencies between columns, thereby enhancing the fidelity of the synthetic data. The proposed framework, encompassing the interpolation in the decoding process and the generation method for conditions, serves to render synthetic data more realistic. A comprehensive evaluation on six datasets demonstrated that the proposed method is effective in terms of data quality, usability, and privacy level of the synthesized data. The source code is available at <span><span>https://github.com/rch1025/Tabular-GAN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"645 ","pages":"Article 130484"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225011567","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Tabular data synthesis is an important research area in terms of privacy and data utilization. To enhance the utilization of tabular data, data synthesis techniques are extensively explored. The primary goal of tabular data synthesis is to generate high-quality data that preserve original insights while reducing the risk of data breaches. In this study, we propose a novel generative adversarial network (GAN) for quality boost of tabular data synthesis. The method of transforming continuous variables and correct conditioning for capturing dependencies between variables is considered a critical factor in determining data quality. Therefore, our proposed method uses interpolative cumulative distribution function (CDF) decoding for continuous columns and type-specific conditioner. Interpolative CDF decoding addresses a limitation of the inverse CDF method that restricts the diversity of synthetic data. In addition, the type-specific conditioner conditions the interdependencies between columns by integrating both discrete and continuous conditions. The introduction of conditional dependencies enables the generator to accurately capture complex dependencies between columns, thereby enhancing the fidelity of the synthetic data. The proposed framework, encompassing the interpolation in the decoding process and the generation method for conditions, serves to render synthetic data more realistic. A comprehensive evaluation on six datasets demonstrated that the proposed method is effective in terms of data quality, usability, and privacy level of the synthesized data. The source code is available at https://github.com/rch1025/Tabular-GAN.
利用插值累积分布函数解码和特定类型调节器提高表格数据合成的质量
表格数据综合是隐私和数据利用方面的一个重要研究领域。为了提高表格数据的利用率,对数据合成技术进行了广泛的探索。表格数据合成的主要目标是生成高质量的数据,在保留原始见解的同时降低数据泄露的风险。在这项研究中,我们提出了一种新的生成对抗网络(GAN)来提高表格数据合成的质量。连续变量的转换方法和捕获变量之间依赖关系的正确条件调节被认为是决定数据质量的关键因素。因此,我们提出的方法使用插值累积分布函数(CDF)解码连续列和特定类型的条件。插值CDF解码解决了反向CDF方法限制合成数据多样性的限制。此外,类型特定的条件条件之间的相互依赖性,通过积分离散和连续条件。条件依赖关系的引入使生成器能够准确地捕获列之间的复杂依赖关系,从而增强合成数据的保真度。所提出的框架,包括解码过程中的插值和条件的生成方法,有助于使合成数据更加真实。对六个数据集的综合评价表明,该方法在数据质量、可用性和合成数据的隐私级别方面是有效的。源代码可从https://github.com/rch1025/Tabular-GAN获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信