ParaValve: An open source framework for parametric design and fluid–structure interaction simulation of bioprosthetic heart valves in patient-specific aortic geometries
IF 1.3 4区 计算机科学Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Mehdi Saraeian, Ashton M. Corpuz, Ming-Chen Hsu, Adarsh Krishnamurthy
{"title":"ParaValve: An open source framework for parametric design and fluid–structure interaction simulation of bioprosthetic heart valves in patient-specific aortic geometries","authors":"Mehdi Saraeian, Ashton M. Corpuz, Ming-Chen Hsu, Adarsh Krishnamurthy","doi":"10.1016/j.cagd.2025.102455","DOIUrl":null,"url":null,"abstract":"<div><div>Heart valve disease (HVD), a significant cardiovascular complication, is one of the leading global causes of morbidity and mortality. Treatment for HVD often involves medical devices such as bioprosthetic valves. However, the design and optimization of these devices require a thorough understanding of their biomechanical and hemodynamic interactions with patient-specific anatomical structures. Parametric procedural geometry has become a powerful tool in enhancing the efficiency and accuracy of design optimization for such devices, allowing researchers to systematically explore a wide range of possible configurations. In this work, we present a robust framework for parametric and procedural modeling of stented bioprosthetic heart valves and patient-specific aortic geometries. The framework employs non-uniform rational B-splines (NURBS)-based geometric parameterization, enabling precise control over key anatomical and design variables. By enabling a modular and expandable workflow, the framework supports iterative optimization of valve designs to achieve improved hemodynamic performance and durability. We demonstrate its applicability through simulations on bioprosthetic aortic valves, highlighting the impact of geometric parameters on valve function and their potential for personalized device design. By coupling parametric geometry with computational tools, this framework offers researchers and engineers a streamlined pathway toward innovative and patient-specific cardiovascular solutions.</div></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"120 ","pages":"Article 102455"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839625000445","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Heart valve disease (HVD), a significant cardiovascular complication, is one of the leading global causes of morbidity and mortality. Treatment for HVD often involves medical devices such as bioprosthetic valves. However, the design and optimization of these devices require a thorough understanding of their biomechanical and hemodynamic interactions with patient-specific anatomical structures. Parametric procedural geometry has become a powerful tool in enhancing the efficiency and accuracy of design optimization for such devices, allowing researchers to systematically explore a wide range of possible configurations. In this work, we present a robust framework for parametric and procedural modeling of stented bioprosthetic heart valves and patient-specific aortic geometries. The framework employs non-uniform rational B-splines (NURBS)-based geometric parameterization, enabling precise control over key anatomical and design variables. By enabling a modular and expandable workflow, the framework supports iterative optimization of valve designs to achieve improved hemodynamic performance and durability. We demonstrate its applicability through simulations on bioprosthetic aortic valves, highlighting the impact of geometric parameters on valve function and their potential for personalized device design. By coupling parametric geometry with computational tools, this framework offers researchers and engineers a streamlined pathway toward innovative and patient-specific cardiovascular solutions.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.