Synergistic coordination-regulated separation of nickel and cobalt from spent Ni(II) and Co(II) bearing choline chloride/ethylene glycol electrolyte: theoretical and experimental investigations
{"title":"Synergistic coordination-regulated separation of nickel and cobalt from spent Ni(II) and Co(II) bearing choline chloride/ethylene glycol electrolyte: theoretical and experimental investigations","authors":"Chaowu Wang , Jie Wang , Qibo Zhang","doi":"10.1016/j.gce.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient and environmentally friendly metal recovery technologies from secondary resources is crucial for enhancing resource utilization and promoting environmental sustainability. However, metals with similar physicochemical properties pose significant challenges in the recovery process, particularly for nickel and cobalt. Herein, we present a coordination-regulated approach utilizing water-, temperature-, and pH-codrived to achieve sequential precipitation recovery of nickel and cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Ni(II) and Co(II) ions. By carefully adjusting water content, temperature, and pH, we can control the speciation of Ni(II) ([NiCl(H<sub>2</sub>O)<sub>2</sub>(EG)<sub>2</sub>]<sup>+</sup>) and Co(II) ([CoCl<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(EG)<sub>2</sub>]<sup>0</sup>) ions in the Ethaline-based electrolyte, thereby facilitating nickel preferential precipitation. Additionally, further introducing water into the Co(II)-rich phase promotes the formation of [CoCl(H<sub>2</sub>O)<sub>3</sub>(EG)<sub>2</sub>]<sup>+</sup> complex ions, leading to efficient separation of cobalt. When oxalic acid is used as a precipitant, the recovery efficiencies for nickel and cobalt reach 96.3% and 97.5%, respectively, with purities of 97.8% and 98.5%. Importantly, distilling the water-containing solvent allows for regeneration of Ethaline with a yield rate as high as 97.1%, while maintaining its structural stability. This proposed strategy offers a promising pathway for sustainable metal recovery from spent Ethaline electrolytes containing metal ions while enabling solvent regeneration.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 3","pages":"Pages 398-409"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952824000669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing efficient and environmentally friendly metal recovery technologies from secondary resources is crucial for enhancing resource utilization and promoting environmental sustainability. However, metals with similar physicochemical properties pose significant challenges in the recovery process, particularly for nickel and cobalt. Herein, we present a coordination-regulated approach utilizing water-, temperature-, and pH-codrived to achieve sequential precipitation recovery of nickel and cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Ni(II) and Co(II) ions. By carefully adjusting water content, temperature, and pH, we can control the speciation of Ni(II) ([NiCl(H2O)2(EG)2]+) and Co(II) ([CoCl2(H2O)2(EG)2]0) ions in the Ethaline-based electrolyte, thereby facilitating nickel preferential precipitation. Additionally, further introducing water into the Co(II)-rich phase promotes the formation of [CoCl(H2O)3(EG)2]+ complex ions, leading to efficient separation of cobalt. When oxalic acid is used as a precipitant, the recovery efficiencies for nickel and cobalt reach 96.3% and 97.5%, respectively, with purities of 97.8% and 98.5%. Importantly, distilling the water-containing solvent allows for regeneration of Ethaline with a yield rate as high as 97.1%, while maintaining its structural stability. This proposed strategy offers a promising pathway for sustainable metal recovery from spent Ethaline electrolytes containing metal ions while enabling solvent regeneration.