{"title":"A bound-preserving Runge–Kutta discontinuous Galerkin method with compact stencils for hyperbolic conservation laws","authors":"Chen Liu , Zheng Sun , Xiangxiong Zhang","doi":"10.1016/j.jcp.2025.114071","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop bound-preserving techniques for the Runge–Kutta (RK) discontinuous Galerkin (DG) method with compact stencils (cRKDG method) for hyperbolic conservation laws. The cRKDG method was recently introduced in [Q. Chen, Z. Sun, and Y. Xing, <em>SIAM J. Sci. Comput.</em>, 46: A1327–A1351, 2024]. It enhances the compactness of the standard RKDG method, resulting in reduced data communication, simplified boundary treatments, and improved suitability for local time marching. This work improves the robustness of the cRKDG method by enforcing desirable physical bounds while preserving its compactness, local conservation, and high-order accuracy. Our method is extended from the seminal work of [X. Zhang and C.-W. Shu, <em>J. Comput. Phys.</em>, 229: 3091–3120, 2010]. We prove that the cell average of the cRKDG method at each RK stage preserves the physical bounds by expressing it as a convex combination of three types of forward-Euler solutions. A scaling limiter is then applied after each RK stage to enforce pointwise bounds. Additionally, we explore RK methods with less restrictive time step sizes. Because the cRKDG method does not rely on strong-stability-preserving RK time discretization, it avoids its order barriers, allowing us to construct a four-stage, fourth-order bound-preserving cRKDG method. Numerical tests on challenging benchmarks are provided to demonstrate the performance of the proposed method.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"537 ","pages":"Article 114071"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003547","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop bound-preserving techniques for the Runge–Kutta (RK) discontinuous Galerkin (DG) method with compact stencils (cRKDG method) for hyperbolic conservation laws. The cRKDG method was recently introduced in [Q. Chen, Z. Sun, and Y. Xing, SIAM J. Sci. Comput., 46: A1327–A1351, 2024]. It enhances the compactness of the standard RKDG method, resulting in reduced data communication, simplified boundary treatments, and improved suitability for local time marching. This work improves the robustness of the cRKDG method by enforcing desirable physical bounds while preserving its compactness, local conservation, and high-order accuracy. Our method is extended from the seminal work of [X. Zhang and C.-W. Shu, J. Comput. Phys., 229: 3091–3120, 2010]. We prove that the cell average of the cRKDG method at each RK stage preserves the physical bounds by expressing it as a convex combination of three types of forward-Euler solutions. A scaling limiter is then applied after each RK stage to enforce pointwise bounds. Additionally, we explore RK methods with less restrictive time step sizes. Because the cRKDG method does not rely on strong-stability-preserving RK time discretization, it avoids its order barriers, allowing us to construct a four-stage, fourth-order bound-preserving cRKDG method. Numerical tests on challenging benchmarks are provided to demonstrate the performance of the proposed method.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.