Ze Zhu , Uri Yogev , Amit Gross , Karel J. Keesman
{"title":"Environmental assessment of industrial aquaponics in arid zones using an integrated dynamic model","authors":"Ze Zhu , Uri Yogev , Amit Gross , Karel J. Keesman","doi":"10.1016/j.inpa.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>Land desertification, water scarcity, and food security challenges in arid zones are intensifying, driving the need for sustainable agricultural solutions like aquaponics. This study investigated innovative water and energy-saving strategies using an integrated dynamic model for an on-demand industrial aquaponics system in Israel. The model evaluated the performance of a recirculating aquaculture system (RAS), hydroponics system (HPS), and desalination unit (DU) by adjusting physical and operational parameters to optimize water and nutrient use efficiency, energy consumption, and yield. Optimizing the system design resulted in an aquaponics system with approximately 420 m<sup>3</sup> RAS, 6.85 ha HPS and 40 m<sup>3</sup>/d DU, achieving phosphorus use efficiency of 96 %, a water use efficiency of 97 %, freshwater input of 1.5 L/day/m<sup>2</sup>, and energy consumption of 0.56 kWh/day/m<sup>2</sup>. To mitigate the challenges of extreme arid climates, evaporative cooling combined with outdoor shading and mechanical cooling was found to be a feasible option to control temperature and humidity in the greenhouse. Dehumidification technologies further improved system performance by recovering 22 % freshwater from seawater and increasing nitrogen use efficiency by 18 %. Achieving daily energy self-sufficiency required 4500 m<sup>2</sup> photovoltaic panels and 5000 m<sup>2</sup> solar heating system. While the system model was initially devised with a specific focus on conditions in Israel, it has been designed with scalability, allowing it to be adapted and applied extensively across diverse peri-urban regions and arid zones globally.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 260-277"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Land desertification, water scarcity, and food security challenges in arid zones are intensifying, driving the need for sustainable agricultural solutions like aquaponics. This study investigated innovative water and energy-saving strategies using an integrated dynamic model for an on-demand industrial aquaponics system in Israel. The model evaluated the performance of a recirculating aquaculture system (RAS), hydroponics system (HPS), and desalination unit (DU) by adjusting physical and operational parameters to optimize water and nutrient use efficiency, energy consumption, and yield. Optimizing the system design resulted in an aquaponics system with approximately 420 m3 RAS, 6.85 ha HPS and 40 m3/d DU, achieving phosphorus use efficiency of 96 %, a water use efficiency of 97 %, freshwater input of 1.5 L/day/m2, and energy consumption of 0.56 kWh/day/m2. To mitigate the challenges of extreme arid climates, evaporative cooling combined with outdoor shading and mechanical cooling was found to be a feasible option to control temperature and humidity in the greenhouse. Dehumidification technologies further improved system performance by recovering 22 % freshwater from seawater and increasing nitrogen use efficiency by 18 %. Achieving daily energy self-sufficiency required 4500 m2 photovoltaic panels and 5000 m2 solar heating system. While the system model was initially devised with a specific focus on conditions in Israel, it has been designed with scalability, allowing it to be adapted and applied extensively across diverse peri-urban regions and arid zones globally.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining