Ziye Wang , Qianchen Wang , Yingshuai Wang , Tinglu Song , Yuhang Xin , Qingbo Zhou , Lei Liu , Amna Safdar , Feng Wu , Hongcai Gao
{"title":"Ultra-low concentration and flame-retardant electrolyte for next-generation lithium metal batteries","authors":"Ziye Wang , Qianchen Wang , Yingshuai Wang , Tinglu Song , Yuhang Xin , Qingbo Zhou , Lei Liu , Amna Safdar , Feng Wu , Hongcai Gao","doi":"10.1016/j.jcis.2025.137949","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium metal batteries (LMBs) are regarded as the next generation of electrochemical energy storage devices with high energy density that hold great promise in the applications of electric vehicles (EVs) and portable electronic devices. However, the commercial carbonate electrolytes are limited by their flammability, lithium dendrite growth and poor cycle stability. In this work, an ultra-low concentration and flame-retardant electrolyte with 0.2 M lithium hexafluorophosphorate (LiPF<sub>6</sub>) solventated in fluoroethylene carbonate (FEC), dimethyl carbonate (DMC) and 1,1,2,2-tetrafluoroethylene-2,2,3,3-tetrafluoropropyl ether (TTE) was prepared for lithium metal batteries. The results demonstrate that the introduction of a large amount of fluorine-containing solvent formed a uniform, strong and thin electrolyte/electrode interface layer both on the cathode and anode. That efficiently suppressed dendrite formation on the lithium metal anode, and greatly reduced the appearance of undesirable decomposition products, ensuring the cycling stability of electrolyte and electrode materials. Notably, the ultra-low concentration electrolyte has excellent flame retardancy, and significantly improves the electrochemical characteristics of Li||Li symmetrical batteries and Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) batteries. The work presents a promising non-flammable, low-concentration electrolyte for next-generation LMBs and new insights into innovations in the formulation of advanced electrolytes for electrochemical energy storage technologies.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137949"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013402","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium metal batteries (LMBs) are regarded as the next generation of electrochemical energy storage devices with high energy density that hold great promise in the applications of electric vehicles (EVs) and portable electronic devices. However, the commercial carbonate electrolytes are limited by their flammability, lithium dendrite growth and poor cycle stability. In this work, an ultra-low concentration and flame-retardant electrolyte with 0.2 M lithium hexafluorophosphorate (LiPF6) solventated in fluoroethylene carbonate (FEC), dimethyl carbonate (DMC) and 1,1,2,2-tetrafluoroethylene-2,2,3,3-tetrafluoropropyl ether (TTE) was prepared for lithium metal batteries. The results demonstrate that the introduction of a large amount of fluorine-containing solvent formed a uniform, strong and thin electrolyte/electrode interface layer both on the cathode and anode. That efficiently suppressed dendrite formation on the lithium metal anode, and greatly reduced the appearance of undesirable decomposition products, ensuring the cycling stability of electrolyte and electrode materials. Notably, the ultra-low concentration electrolyte has excellent flame retardancy, and significantly improves the electrochemical characteristics of Li||Li symmetrical batteries and Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) batteries. The work presents a promising non-flammable, low-concentration electrolyte for next-generation LMBs and new insights into innovations in the formulation of advanced electrolytes for electrochemical energy storage technologies.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies