Uncovering the location of photovoltaic power plants using heterogeneous remote sensing imagery

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Siyuan Wang , Bowen Cai , Dongyang Hou , Qiance Liu , Xiaoyu Zheng , Jinyang Wang , Zhenfeng Shao
{"title":"Uncovering the location of photovoltaic power plants using heterogeneous remote sensing imagery","authors":"Siyuan Wang ,&nbsp;Bowen Cai ,&nbsp;Dongyang Hou ,&nbsp;Qiance Liu ,&nbsp;Xiaoyu Zheng ,&nbsp;Jinyang Wang ,&nbsp;Zhenfeng Shao","doi":"10.1016/j.egyai.2025.100527","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate monitoring of photovoltaic (PV) spatial distribution using remote sensing imagery is critical for understanding energy production dynamics. The integration of spatial and spectral features facilitates precise identification of diverse PV installation scenarios. However, existing methods primarily depend on single-source multispectral or high-resolution imagery, limiting their ability to balance spatial detail and spectral richness. To address this, this paper proposes a spatial-spectral differential semantic fusion network named FusionPV to comprehensively map PV locations within complex geographical environments. First, a spatial-spectral differential semantic aware module (SDAM) is proposed to extract spatial and spectral features related to PV discrimination from multimodal images. Subsequently, a dual-domain adaptive cross-fusion module (DAFM) is designed to deeply aggregate and cross-focus multimodal information using a cross-attention mechanism. Furthermore, a local-global semantic aggregation module (LGAM) is introduced to construct global descriptors by locally encoding and aggregating images, thereby enhancing contextual comprehension of intricate scenes. We construct a multimodal PV dataset by integrating GF-2 and Sentinel-2 imagery, focusing on Hubei Province, China. Experimental results demonstrate that FusionPV outperforms five state-of-the-art methods, achieving Kappa coefficient improvements ranging from 3.78 % to 7.23 %. Additionally, a comparison with four existing PV products indicates that FusionPV is a superior solution for acquiring a high-quality, extensive database of PV locations.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100527"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654682500059X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate monitoring of photovoltaic (PV) spatial distribution using remote sensing imagery is critical for understanding energy production dynamics. The integration of spatial and spectral features facilitates precise identification of diverse PV installation scenarios. However, existing methods primarily depend on single-source multispectral or high-resolution imagery, limiting their ability to balance spatial detail and spectral richness. To address this, this paper proposes a spatial-spectral differential semantic fusion network named FusionPV to comprehensively map PV locations within complex geographical environments. First, a spatial-spectral differential semantic aware module (SDAM) is proposed to extract spatial and spectral features related to PV discrimination from multimodal images. Subsequently, a dual-domain adaptive cross-fusion module (DAFM) is designed to deeply aggregate and cross-focus multimodal information using a cross-attention mechanism. Furthermore, a local-global semantic aggregation module (LGAM) is introduced to construct global descriptors by locally encoding and aggregating images, thereby enhancing contextual comprehension of intricate scenes. We construct a multimodal PV dataset by integrating GF-2 and Sentinel-2 imagery, focusing on Hubei Province, China. Experimental results demonstrate that FusionPV outperforms five state-of-the-art methods, achieving Kappa coefficient improvements ranging from 3.78 % to 7.23 %. Additionally, a comparison with four existing PV products indicates that FusionPV is a superior solution for acquiring a high-quality, extensive database of PV locations.
利用异构遥感影像揭示光伏电站的位置
利用遥感影像精确监测光伏空间分布对于了解能源生产动态至关重要。空间和光谱特征的整合有助于精确识别不同的光伏安装场景。然而,现有的方法主要依赖于单源多光谱或高分辨率图像,限制了它们平衡空间细节和光谱丰富度的能力。为了解决这一问题,本文提出了一种名为FusionPV的空间光谱差分语义融合网络,用于综合绘制复杂地理环境下的光伏位置。首先,提出了一种空间光谱差分语义感知模块(SDAM),用于从多模态图像中提取与PV识别相关的空间和光谱特征;随后,设计了双域自适应交叉融合模块(DAFM),利用交叉关注机制对多模态信息进行深度聚合和交叉聚焦。在此基础上,引入局部-全局语义聚合模块(LGAM),通过对图像进行局部编码和聚合来构建全局描述符,从而提高对复杂场景的上下文理解能力。本文将GF-2和Sentinel-2影像整合,构建了以中国湖北省为研究对象的多模态光伏数据集。实验结果表明,FusionPV优于五种最先进的方法,实现了3.78%至7.23%的Kappa系数改进。此外,与四种现有光伏产品的比较表明,FusionPV是获取高质量、广泛的光伏站点数据库的优越解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信