Rezvan Rahimi , Mohammad Solimannejad , Mohammad Hossein Abnosi
{"title":"In silico study of salicylic acid derivatives as inhibitors of Ebola proteins through molecular docking","authors":"Rezvan Rahimi , Mohammad Solimannejad , Mohammad Hossein Abnosi","doi":"10.1016/j.compbiolchem.2025.108504","DOIUrl":null,"url":null,"abstract":"<div><div>The Zaire Ebola virus is a highly virulent RNA virus that causes severe hemorrhagic fever in humans and nonhuman primates, with no effective treatments currently available. This study evaluates the inhibitory potential of six salicylic acid derivatives including aspirin, diflunisal, fendosal, fosfosal, salicylic acid, and salsalate; against three key Ebola virus receptor proteins through in-silico analysis. Molecular docking techniques have employed to model the interactions between these derivatives and the viral proteins VP24, VP35, and VP40. The results revealed that the salicylic acid derivatives demonstrated significantly stronger binding affinities to the VP35 receptor compared to other receptor proteins studied. Among the derivatives screened, those targeting the VP35 protein exhibited superior binding energy, glide energy, glide E<sub>model</sub>, glide E<sub>vdw</sub>, and glide ligand efficiency, alongside the lowest RMSD values. These findings suggest that salicylic acid derivatives hold promise as potential anti-Ebola therapies and warrant further investigation in clinical trials.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"119 ","pages":"Article 108504"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125001641","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Zaire Ebola virus is a highly virulent RNA virus that causes severe hemorrhagic fever in humans and nonhuman primates, with no effective treatments currently available. This study evaluates the inhibitory potential of six salicylic acid derivatives including aspirin, diflunisal, fendosal, fosfosal, salicylic acid, and salsalate; against three key Ebola virus receptor proteins through in-silico analysis. Molecular docking techniques have employed to model the interactions between these derivatives and the viral proteins VP24, VP35, and VP40. The results revealed that the salicylic acid derivatives demonstrated significantly stronger binding affinities to the VP35 receptor compared to other receptor proteins studied. Among the derivatives screened, those targeting the VP35 protein exhibited superior binding energy, glide energy, glide Emodel, glide Evdw, and glide ligand efficiency, alongside the lowest RMSD values. These findings suggest that salicylic acid derivatives hold promise as potential anti-Ebola therapies and warrant further investigation in clinical trials.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.