ConCeal: A Winograd convolution code template for optimising GCU in parallel

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Tian Chen , Yu-an Tan , Thar Baker , Haokai Wu , Qiuyu Zhang , Yuanzhang Li
{"title":"ConCeal: A Winograd convolution code template for optimising GCU in parallel","authors":"Tian Chen ,&nbsp;Yu-an Tan ,&nbsp;Thar Baker ,&nbsp;Haokai Wu ,&nbsp;Qiuyu Zhang ,&nbsp;Yuanzhang Li","doi":"10.1016/j.jpdc.2025.105108","DOIUrl":null,"url":null,"abstract":"<div><div>By minimising arithmetic operations, Winograd convolution substantially reduces the computational complexity of convolution, a pivotal operation in the training and inference stages of Convolutional Neural Networks (CNNs). This study leverages the hardware architecture and capabilities of Shanghai Enflame Technology's AI accelerator, the General Computing Unit (GCU). We develop a code template named ConCeal for Winograd convolution with 3 × 3 kernels, employing a set of interrelated optimisations, including task partitioning, memory layout design, and parallelism. These optimisations fully exploit GCU's computing resources by optimising dataflow and parallelizing the execution of tasks on GCU cores, thereby enhancing Winograd convolution. Moreover, the integrated optimisations in the template are efficiently applicable to other operators, such as max pooling. Using this template, we implement and assess the performance of four Winograd convolution operators on GCU. The experimental results showcase that Conceal operators achieve a maximum of 2.04× and an average of 1.49× speedup compared to the fastest GEMM-based convolution implementations on GCU. Additionally, the ConCeal operators demonstrate competitive or superior computing resource utilisation in certain ResNet and VGG convolution layers when compared to cuDNN on RTX2080.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"203 ","pages":"Article 105108"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000759","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

By minimising arithmetic operations, Winograd convolution substantially reduces the computational complexity of convolution, a pivotal operation in the training and inference stages of Convolutional Neural Networks (CNNs). This study leverages the hardware architecture and capabilities of Shanghai Enflame Technology's AI accelerator, the General Computing Unit (GCU). We develop a code template named ConCeal for Winograd convolution with 3 × 3 kernels, employing a set of interrelated optimisations, including task partitioning, memory layout design, and parallelism. These optimisations fully exploit GCU's computing resources by optimising dataflow and parallelizing the execution of tasks on GCU cores, thereby enhancing Winograd convolution. Moreover, the integrated optimisations in the template are efficiently applicable to other operators, such as max pooling. Using this template, we implement and assess the performance of four Winograd convolution operators on GCU. The experimental results showcase that Conceal operators achieve a maximum of 2.04× and an average of 1.49× speedup compared to the fastest GEMM-based convolution implementations on GCU. Additionally, the ConCeal operators demonstrate competitive or superior computing resource utilisation in certain ResNet and VGG convolution layers when compared to cuDNN on RTX2080.
一个Winograd卷积代码模板,用于并行优化GCU
通过最小化算术运算,Winograd卷积大大降低了卷积的计算复杂度,卷积是卷积神经网络(cnn)训练和推理阶段的关键操作。本研究利用了上海恩焰科技人工智能加速器通用计算单元(GCU)的硬件架构和功能。我们开发了一个名为“隐藏”的代码模板,用于3x3内核的Winograd卷积,采用了一组相关的优化,包括任务分区、内存布局设计和并行性。这些优化充分利用了GCU的计算资源,优化了数据流,并在GCU核心上并行执行任务,从而增强了Winograd卷积。此外,模板中的集成优化可以有效地应用于其他操作,例如最大池。使用该模板,我们在GCU上实现并评估了四个Winograd卷积算子的性能。实验结果表明,与GCU上最快的基于gem的卷积实现相比,隐蔽算子的最大加速速度为2.04倍,平均加速速度为1.49倍。此外,与RTX2080上的cuDNN相比,在某些ResNet和VGG卷积层中,hide运算符显示出具有竞争力或更高的计算资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信