{"title":"On combinatorial network flows algorithms and circuit augmentation for pseudoflows","authors":"Steffen Borgwardt, Angela Morrison","doi":"10.1007/s10878-025-01313-3","DOIUrl":null,"url":null,"abstract":"<p>There are numerous combinatorial algorithms for classical min-cost flow problems and their simpler variants like max flow or shortest path problems. It is well-known that many of these algorithms are related to the Simplex method and the more general circuit augmentation schemes: prime examples are the network Simplex method, a refinement of the primal Simplex method, and min-mean cycle canceling, which corresponds to a steepest-descent circuit augmentation scheme. We are interested in a deeper understanding of the relationship between circuit augmentation and combinatorial network flows algorithms. To this end, we generalize from primal flows to so-called pseudoflows, which adhere to arc capacities but allow for a violation of flow balance. We introduce ‘pseudoflow polyhedra,’ wherein slack variables are used to quantify this violation, and characterize their circuits. This enables the study of combinatorial network flows algorithms in view of the walks they trace in these polyhedra, and the pivot rules for the steps. In doing so, we provide an ‘umbrella,’ a general framework, that captures several algorithms. We show that the Successive Shortest Path Algorithm for min-cost flow problems, the Shortest Augmenting Path Algorithm for max flow problems, and the Preflow-Push algorithm for max flow problems lead to (non-edge) circuit walks in these polyhedra. The former two are replicated by circuit augmentation schemes for simple pivot rules. Further, we show that the Hungarian Method leads to an edge walk and is replicated, equivalently, as a circuit augmentation scheme or a primal Simplex run for a simple pivot rule.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"136 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01313-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
There are numerous combinatorial algorithms for classical min-cost flow problems and their simpler variants like max flow or shortest path problems. It is well-known that many of these algorithms are related to the Simplex method and the more general circuit augmentation schemes: prime examples are the network Simplex method, a refinement of the primal Simplex method, and min-mean cycle canceling, which corresponds to a steepest-descent circuit augmentation scheme. We are interested in a deeper understanding of the relationship between circuit augmentation and combinatorial network flows algorithms. To this end, we generalize from primal flows to so-called pseudoflows, which adhere to arc capacities but allow for a violation of flow balance. We introduce ‘pseudoflow polyhedra,’ wherein slack variables are used to quantify this violation, and characterize their circuits. This enables the study of combinatorial network flows algorithms in view of the walks they trace in these polyhedra, and the pivot rules for the steps. In doing so, we provide an ‘umbrella,’ a general framework, that captures several algorithms. We show that the Successive Shortest Path Algorithm for min-cost flow problems, the Shortest Augmenting Path Algorithm for max flow problems, and the Preflow-Push algorithm for max flow problems lead to (non-edge) circuit walks in these polyhedra. The former two are replicated by circuit augmentation schemes for simple pivot rules. Further, we show that the Hungarian Method leads to an edge walk and is replicated, equivalently, as a circuit augmentation scheme or a primal Simplex run for a simple pivot rule.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.