{"title":"RECOVER: Toward Requirements Generation From Stakeholders’ Conversations","authors":"Gianmario Voria;Francesco Casillo;Carmine Gravino;Gemma Catolino;Fabio Palomba","doi":"10.1109/TSE.2025.3572056","DOIUrl":null,"url":null,"abstract":"Stakeholders’ conversations requirements elicitation meetings hold valuable insights into system and client needs. However, manually extracting requirements is time-consuming, labor-intensive, and prone to errors and biases. While current state-of-the-art methods assist in summarizing stakeholder conversations and classifying requirements based on their nature, there is a noticeable lack of approaches capable of both identifying requirements within these conversations and generating corresponding system requirements. These approaches would assist requirement identification, reducing engineers’ workload, time, and effort. They would also enhance accuracy and consistency in documentation, providing a reliable foundation for further analysis. To address this gap, this paper introduces <sc>RECOVER</small> (Requirements EliCitation frOm conVERsations), a novel conversational requirements engineering approach that leverages natural language processing and large language models (LLMs) to support practitioners in automatically extracting system requirements from stakeholder interactions by analyzing individual conversation turns. The approach is evaluated using a mixed-method research design that combines statistical performance analysis with a user study involving requirements engineers, targeting two levels of granularity. First, at the conversation turn level, the evaluation measures <sc>RECOVER</small>’s accuracy in identifying requirements-relevant dialogue and the quality of generated requirements in terms of correctness, completeness, and actionability. Second, at the entire conversation level, the evaluation assesses the overall usefulness and effectiveness of <sc>RECOVER</small> in synthesizing comprehensive system requirements from full stakeholder discussions. Empirical evaluation of <sc>RECOVER</small> shows promising performance, with generated requirements demonstrating satisfactory correctness, completeness, and actionability. The results also highlight the potential of automating requirements elicitation from conversations as an aid that enhances efficiency while maintaining human oversight.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 6","pages":"1912-1933"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11008757/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Stakeholders’ conversations requirements elicitation meetings hold valuable insights into system and client needs. However, manually extracting requirements is time-consuming, labor-intensive, and prone to errors and biases. While current state-of-the-art methods assist in summarizing stakeholder conversations and classifying requirements based on their nature, there is a noticeable lack of approaches capable of both identifying requirements within these conversations and generating corresponding system requirements. These approaches would assist requirement identification, reducing engineers’ workload, time, and effort. They would also enhance accuracy and consistency in documentation, providing a reliable foundation for further analysis. To address this gap, this paper introduces RECOVER (Requirements EliCitation frOm conVERsations), a novel conversational requirements engineering approach that leverages natural language processing and large language models (LLMs) to support practitioners in automatically extracting system requirements from stakeholder interactions by analyzing individual conversation turns. The approach is evaluated using a mixed-method research design that combines statistical performance analysis with a user study involving requirements engineers, targeting two levels of granularity. First, at the conversation turn level, the evaluation measures RECOVER’s accuracy in identifying requirements-relevant dialogue and the quality of generated requirements in terms of correctness, completeness, and actionability. Second, at the entire conversation level, the evaluation assesses the overall usefulness and effectiveness of RECOVER in synthesizing comprehensive system requirements from full stakeholder discussions. Empirical evaluation of RECOVER shows promising performance, with generated requirements demonstrating satisfactory correctness, completeness, and actionability. The results also highlight the potential of automating requirements elicitation from conversations as an aid that enhances efficiency while maintaining human oversight.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.