Mohamed Chairi, Jalal El Bahaoui, Issam Hanafi, Federica Favaloro, Chiara Borsellino, Fabia Galantini, Guido Di Bella
{"title":"Computational assessment of sustainable balsa and basalt composite sandwich for structural marine applications","authors":"Mohamed Chairi, Jalal El Bahaoui, Issam Hanafi, Federica Favaloro, Chiara Borsellino, Fabia Galantini, Guido Di Bella","doi":"10.1177/10567895251342399","DOIUrl":null,"url":null,"abstract":"In response to environmental challenges and the demand for sustainability, this study explores a novel engineering structure, harnessing the potential of bio-based materials within the framework of composite sandwich structures. This investigation employs finite element modeling to assess sandwich structures composed of End-grain balsa wood and fiber-reinforced polymer (FRP) facesheets. These facesheets incorporate glass, carbon, and basalt fibers, enabling a direct comparison between conventional and bio-based materials. Mechanical responses are evaluated under numerical flexural loading using Abaqus/Implicit, with a specialized wood material model integrated via a User Material (UMAT) subroutine. A 2D Hashin failure criterion assesses FRP facesheets. Intriguingly, findings indicate minimal influence from FRP on structural performance, while balsa wood and the core-casings interface emerge as decisive factors.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"122 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895251342399","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In response to environmental challenges and the demand for sustainability, this study explores a novel engineering structure, harnessing the potential of bio-based materials within the framework of composite sandwich structures. This investigation employs finite element modeling to assess sandwich structures composed of End-grain balsa wood and fiber-reinforced polymer (FRP) facesheets. These facesheets incorporate glass, carbon, and basalt fibers, enabling a direct comparison between conventional and bio-based materials. Mechanical responses are evaluated under numerical flexural loading using Abaqus/Implicit, with a specialized wood material model integrated via a User Material (UMAT) subroutine. A 2D Hashin failure criterion assesses FRP facesheets. Intriguingly, findings indicate minimal influence from FRP on structural performance, while balsa wood and the core-casings interface emerge as decisive factors.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).