Diana Garcia Quevedo, Anna Glaser, Caroline Verzat
{"title":"Enhancing Theorization Using Artificial Intelligence: Leveraging Large Language Models for Qualitative Analysis of Online Data","authors":"Diana Garcia Quevedo, Anna Glaser, Caroline Verzat","doi":"10.1177/10944281251339144","DOIUrl":null,"url":null,"abstract":"Online data are constantly growing, providing a wide range of opportunities to explore social phenomena. Large Language Models (LLMs) capture the inherent structure, contextual meaning, and nuance of human language and are the base for state-of-the-art Natural Language Processing (NLP) algorithms. In this article, we describe a method to assist qualitative researchers in the theorization process by efficiently exploring and selecting the most relevant information from a large online dataset. Using LLM-based NLP algorithms, qualitative researchers can efficiently analyze large amounts of online data while still maintaining deep contact with the data and preserving the richness of qualitative analysis. We illustrate the usefulness of our method by examining 5,516 social media posts from 18 entrepreneurs pursuing an environmental mission (ecopreneurs) to analyze their impression management tactics. By helping researchers to explore and select online data efficiently, our method enhances their analytical capabilities, leads to new insights, and ensures precision in counting and classification, thus strengthening the theorization process. We argue that LLMs push researchers to rethink research methods as the distinction between qualitative and quantitative approaches becomes blurred.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"16 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281251339144","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Online data are constantly growing, providing a wide range of opportunities to explore social phenomena. Large Language Models (LLMs) capture the inherent structure, contextual meaning, and nuance of human language and are the base for state-of-the-art Natural Language Processing (NLP) algorithms. In this article, we describe a method to assist qualitative researchers in the theorization process by efficiently exploring and selecting the most relevant information from a large online dataset. Using LLM-based NLP algorithms, qualitative researchers can efficiently analyze large amounts of online data while still maintaining deep contact with the data and preserving the richness of qualitative analysis. We illustrate the usefulness of our method by examining 5,516 social media posts from 18 entrepreneurs pursuing an environmental mission (ecopreneurs) to analyze their impression management tactics. By helping researchers to explore and select online data efficiently, our method enhances their analytical capabilities, leads to new insights, and ensures precision in counting and classification, thus strengthening the theorization process. We argue that LLMs push researchers to rethink research methods as the distinction between qualitative and quantitative approaches becomes blurred.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.