Enhancing Theorization Using Artificial Intelligence: Leveraging Large Language Models for Qualitative Analysis of Online Data

IF 8.9 2区 管理学 Q1 MANAGEMENT
Diana Garcia Quevedo, Anna Glaser, Caroline Verzat
{"title":"Enhancing Theorization Using Artificial Intelligence: Leveraging Large Language Models for Qualitative Analysis of Online Data","authors":"Diana Garcia Quevedo, Anna Glaser, Caroline Verzat","doi":"10.1177/10944281251339144","DOIUrl":null,"url":null,"abstract":"Online data are constantly growing, providing a wide range of opportunities to explore social phenomena. Large Language Models (LLMs) capture the inherent structure, contextual meaning, and nuance of human language and are the base for state-of-the-art Natural Language Processing (NLP) algorithms. In this article, we describe a method to assist qualitative researchers in the theorization process by efficiently exploring and selecting the most relevant information from a large online dataset. Using LLM-based NLP algorithms, qualitative researchers can efficiently analyze large amounts of online data while still maintaining deep contact with the data and preserving the richness of qualitative analysis. We illustrate the usefulness of our method by examining 5,516 social media posts from 18 entrepreneurs pursuing an environmental mission (ecopreneurs) to analyze their impression management tactics. By helping researchers to explore and select online data efficiently, our method enhances their analytical capabilities, leads to new insights, and ensures precision in counting and classification, thus strengthening the theorization process. We argue that LLMs push researchers to rethink research methods as the distinction between qualitative and quantitative approaches becomes blurred.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"16 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281251339144","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

Online data are constantly growing, providing a wide range of opportunities to explore social phenomena. Large Language Models (LLMs) capture the inherent structure, contextual meaning, and nuance of human language and are the base for state-of-the-art Natural Language Processing (NLP) algorithms. In this article, we describe a method to assist qualitative researchers in the theorization process by efficiently exploring and selecting the most relevant information from a large online dataset. Using LLM-based NLP algorithms, qualitative researchers can efficiently analyze large amounts of online data while still maintaining deep contact with the data and preserving the richness of qualitative analysis. We illustrate the usefulness of our method by examining 5,516 social media posts from 18 entrepreneurs pursuing an environmental mission (ecopreneurs) to analyze their impression management tactics. By helping researchers to explore and select online data efficiently, our method enhances their analytical capabilities, leads to new insights, and ensures precision in counting and classification, thus strengthening the theorization process. We argue that LLMs push researchers to rethink research methods as the distinction between qualitative and quantitative approaches becomes blurred.
利用人工智能增强理论化:利用大型语言模型对在线数据进行定性分析
在线数据不断增长,为探索社会现象提供了广泛的机会。大型语言模型(llm)捕捉人类语言的内在结构、上下文含义和细微差别,是最先进的自然语言处理(NLP)算法的基础。在本文中,我们描述了一种方法,通过有效地从大型在线数据集中探索和选择最相关的信息,帮助定性研究人员进行理论化过程。使用基于llm的NLP算法,定性研究人员可以高效地分析大量在线数据,同时保持与数据的深度接触,并保持定性分析的丰富性。我们通过检查18位追求环保使命的企业家(ecopreentrepreneurs)的5516篇社交媒体帖子,分析他们的印象管理策略,来说明我们方法的实用性。通过帮助研究人员有效地探索和选择在线数据,我们的方法提高了他们的分析能力,带来了新的见解,并确保了计数和分类的准确性,从而加强了理论化过程。我们认为法学硕士促使研究人员重新思考研究方法,因为定性和定量方法之间的区别变得模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
23.20
自引率
3.20%
发文量
17
期刊介绍: Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信