Jialing Peng, Yuxin Huang, Tengjing He, Yang Zhan, Jun Liu
{"title":"NLRX1 mediated impaired microglial phagocytosis of NETs in cerebral ischemia and reperfusion injury","authors":"Jialing Peng, Yuxin Huang, Tengjing He, Yang Zhan, Jun Liu","doi":"10.1038/s41418-025-01526-3","DOIUrl":null,"url":null,"abstract":"<p>Ischemic stroke is one of the common causes of disability and death, and subsequent pathological processes consequent to revascularization could promote secondary tissue damage leading to neuronal death, namely cerebral ischemia and reperfusion injury. Neutrophils could invade injured brain parenchyma after vascularization and exert neurotoxicity by forming neutrophil extracellular traps (NETs). However, unwanted NETs were accumulated in the infarcted core of transient middle cerebral artery occlusion (tMCAO) rats and the mechanism is unknown. Efficient microglial phagocytosis is crucial for the homeostasis of cerebral parenchyma after stroke, and dysfunction of microglial phagocytosis of NETs were observed in the infarcted core cortex at tMCAO 1 d and the accumulation of NETs persisted to 7 d, which exerting deleterious neuronal damage after stroke. However, the detailed mechanisms underlying the dysfunction of microglial phagocytosis of NETs remained unclear. Our results further demonstrated that NLRX1 was mainly enhanced in the microglial cells in the infarcted core cortex at tMCAO 1 d and promoted galectin-3 expression on the lysosomes, facilitating the lysosomal dysfunction and impaired microglial phagocytosis via mTOR/TFEB signaling. NLRX1-silencing was able to suppress the galectin-3 intensity, inhibit the phosphorylation of mTOR and facilitate the nuclear localization of TFEB, ameliorating the lysosomal dysfunction and microglial phagocytosis of NETs. Our results uncovered the regulation of NLRX1 in the dysfunctional microglial phagocytosis of NETs and provided insights into the therapeutic potential for targeting at microglial lysosomal function in cerebral ischemia and reperfusion injury.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"133 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01526-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke is one of the common causes of disability and death, and subsequent pathological processes consequent to revascularization could promote secondary tissue damage leading to neuronal death, namely cerebral ischemia and reperfusion injury. Neutrophils could invade injured brain parenchyma after vascularization and exert neurotoxicity by forming neutrophil extracellular traps (NETs). However, unwanted NETs were accumulated in the infarcted core of transient middle cerebral artery occlusion (tMCAO) rats and the mechanism is unknown. Efficient microglial phagocytosis is crucial for the homeostasis of cerebral parenchyma after stroke, and dysfunction of microglial phagocytosis of NETs were observed in the infarcted core cortex at tMCAO 1 d and the accumulation of NETs persisted to 7 d, which exerting deleterious neuronal damage after stroke. However, the detailed mechanisms underlying the dysfunction of microglial phagocytosis of NETs remained unclear. Our results further demonstrated that NLRX1 was mainly enhanced in the microglial cells in the infarcted core cortex at tMCAO 1 d and promoted galectin-3 expression on the lysosomes, facilitating the lysosomal dysfunction and impaired microglial phagocytosis via mTOR/TFEB signaling. NLRX1-silencing was able to suppress the galectin-3 intensity, inhibit the phosphorylation of mTOR and facilitate the nuclear localization of TFEB, ameliorating the lysosomal dysfunction and microglial phagocytosis of NETs. Our results uncovered the regulation of NLRX1 in the dysfunctional microglial phagocytosis of NETs and provided insights into the therapeutic potential for targeting at microglial lysosomal function in cerebral ischemia and reperfusion injury.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.