Redirecting the Peptide Cleavage Causes Protease Inactivation.

Michael Gütschow, Christian Breuer, Jim Küppers, Anna-Christina Schulz-Fincke, Anna Heilos, Carina Lemke, Petra Spiwokowá, Janina Schmitz, Laura Cremer, Marta Frigolé-Vivas, Michael Lülsdorff, Matthias D Mertens, Filip Wichterle, Miloš Apeltauer, Martin Horn, Erik Gilberg, Norbert Furtmann, Jürgen Bajorath, Ulrike Bartz, Bernd Engels, Michael Mareš
{"title":"Redirecting the Peptide Cleavage Causes Protease Inactivation.","authors":"Michael Gütschow, Christian Breuer, Jim Küppers, Anna-Christina Schulz-Fincke, Anna Heilos, Carina Lemke, Petra Spiwokowá, Janina Schmitz, Laura Cremer, Marta Frigolé-Vivas, Michael Lülsdorff, Matthias D Mertens, Filip Wichterle, Miloš Apeltauer, Martin Horn, Erik Gilberg, Norbert Furtmann, Jürgen Bajorath, Ulrike Bartz, Bernd Engels, Michael Mareš","doi":"10.1002/anie.202506832","DOIUrl":null,"url":null,"abstract":"<p><p>Cysteine and serine proteases cleave peptides through covalent catalysis by generating a transient adduct with the N-terminal part of the substrate after releasing its C-terminal part. We demonstrate the unique redirection of this event leading to strong enzyme inactivation. For targeting human cathepsin B, a cysteine protease of significant therapeutic importance, we designed tailored peptidomimetics with a variety of dipeptide fragments directed towards the occluding loop and equipped with numerous N-terminal carbamate warheads. The carbamate deprotonation catalyzed by the active site thiolate initiates the redirected cleavage. The C-terminal part of the inhibitors remains covalently attached to the protease. Hydrolysis of such carbamoyl-enzyme complexes is catalytically unsupported rendering inhibition irreversible. This novel mechanism of action comprises a significant extension of the covalent drug space.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202506832"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202506832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cysteine and serine proteases cleave peptides through covalent catalysis by generating a transient adduct with the N-terminal part of the substrate after releasing its C-terminal part. We demonstrate the unique redirection of this event leading to strong enzyme inactivation. For targeting human cathepsin B, a cysteine protease of significant therapeutic importance, we designed tailored peptidomimetics with a variety of dipeptide fragments directed towards the occluding loop and equipped with numerous N-terminal carbamate warheads. The carbamate deprotonation catalyzed by the active site thiolate initiates the redirected cleavage. The C-terminal part of the inhibitors remains covalently attached to the protease. Hydrolysis of such carbamoyl-enzyme complexes is catalytically unsupported rendering inhibition irreversible. This novel mechanism of action comprises a significant extension of the covalent drug space.

重定向肽切割导致蛋白酶失活。
半胱氨酸和丝氨酸蛋白酶在释放底物的c端部分后,与底物的n端部分产生瞬时加合物,通过共价催化裂解肽。我们证明了该事件的独特重定向导致强烈的酶失活。为了靶向人类组织蛋白酶B(一种具有重要治疗意义的半胱氨酸蛋白酶),我们设计了量身定制的肽模拟物,其具有多种针对闭塞环的二肽片段,并配备了许多n端氨基甲酸酯弹头。活性位点硫酸酯催化氨基甲酸酯去质子化引发重定向裂解。抑制剂的c端部分仍以共价方式附着在蛋白酶上。这种氨甲酰酶配合物的水解是催化不支持的,因此抑制是不可逆的。这种新的作用机制包括共价药物空间的显著扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信