Data Science in Medical and Healthcare: Current Landscape.

Juntendo medical journal Pub Date : 2025-04-10 eCollection Date: 2025-01-01 DOI:10.14789/ejmj.JMJ24-0037-R
Wataru Uchida, Guo Sen, Sun Zhe, Tianxiang Lyu, Christina Andica, Kaito Takabayashi, Keita Tokuda, Keigo Shimoji, Koji Kamagata, Yoshitaka Masutani, Mitsuhisa Sato, Ryutaro Himeno, Shigeki Aoki
{"title":"Data Science in Medical and Healthcare: Current Landscape.","authors":"Wataru Uchida, Guo Sen, Sun Zhe, Tianxiang Lyu, Christina Andica, Kaito Takabayashi, Keita Tokuda, Keigo Shimoji, Koji Kamagata, Yoshitaka Masutani, Mitsuhisa Sato, Ryutaro Himeno, Shigeki Aoki","doi":"10.14789/ejmj.JMJ24-0037-R","DOIUrl":null,"url":null,"abstract":"<p><p>Data science is revolutionizing various industries and its impact on healthcare and life sciences is particularly profound. The vast amounts of data generated in these fields present both opportunities and challenges, necessitating professionals to extract insights and create value from these data resources. However, effective data-driven solutions in healthcare require a unique combination of technical data science skills and deep-domain expertise in areas such as medicine, public health, and sports science. This review discusses the growing importance of domain knowledge in data science and the need for interdisciplinary professionals who can bridge the gap between data analysis and practical applications in the healthcare sector. Furthermore, this paper highlights specific applications of data science in healthcare and life sciences, leveraging artificial intelligence (AI) and advanced computational methods. By integrating cutting-edge data science techniques with profound domain understanding, these applications aim to drive innovation, advance medical research, improve patient outcomes, and deepen our understanding of human health and well-being. Overall, this review underscores the synergies between data science and domain expertise in healthcare and life sciences, emphasizing the importance of interdisciplinary collaboration in unlocking the full potential of data-driven solutions in these critical fields.</p>","PeriodicalId":520470,"journal":{"name":"Juntendo medical journal","volume":"71 2","pages":"82-89"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Juntendo medical journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14789/ejmj.JMJ24-0037-R","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data science is revolutionizing various industries and its impact on healthcare and life sciences is particularly profound. The vast amounts of data generated in these fields present both opportunities and challenges, necessitating professionals to extract insights and create value from these data resources. However, effective data-driven solutions in healthcare require a unique combination of technical data science skills and deep-domain expertise in areas such as medicine, public health, and sports science. This review discusses the growing importance of domain knowledge in data science and the need for interdisciplinary professionals who can bridge the gap between data analysis and practical applications in the healthcare sector. Furthermore, this paper highlights specific applications of data science in healthcare and life sciences, leveraging artificial intelligence (AI) and advanced computational methods. By integrating cutting-edge data science techniques with profound domain understanding, these applications aim to drive innovation, advance medical research, improve patient outcomes, and deepen our understanding of human health and well-being. Overall, this review underscores the synergies between data science and domain expertise in healthcare and life sciences, emphasizing the importance of interdisciplinary collaboration in unlocking the full potential of data-driven solutions in these critical fields.

医学和医疗保健中的数据科学:现状。
数据科学正在改变各行各业,它对医疗保健和生命科学的影响尤其深远。这些领域产生的大量数据既带来了机遇,也带来了挑战,需要专业人员从这些数据资源中提取见解并创造价值。然而,在医疗保健领域,有效的数据驱动解决方案需要独特的技术数据科学技能和医学、公共卫生和体育科学等领域的深度专业知识的结合。这篇综述讨论了数据科学领域知识日益增长的重要性,以及对跨学科专业人员的需求,这些专业人员可以弥合数据分析与医疗保健部门实际应用之间的差距。此外,本文强调了数据科学在医疗保健和生命科学中的具体应用,利用人工智能(AI)和先进的计算方法。通过将尖端的数据科学技术与深刻的领域理解相结合,这些应用程序旨在推动创新,推进医学研究,改善患者的治疗效果,并加深我们对人类健康和福祉的理解。总的来说,这篇综述强调了数据科学与医疗保健和生命科学领域专业知识之间的协同作用,强调了跨学科合作在释放这些关键领域数据驱动解决方案的全部潜力方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信