OrthologAL: A Shiny application for quality- aware humanization of non-human pre-clinical high-dimensional gene expression data.

Rishika Chowdary, Robert K Suter, Matthew D'Antuono, Cynthia Gomes, Joshua Stein, Ki-Bum Lee, Jae K Lee, Nagi G Ayad
{"title":"OrthologAL: A Shiny application for quality- aware humanization of non-human pre-clinical high-dimensional gene expression data.","authors":"Rishika Chowdary, Robert K Suter, Matthew D'Antuono, Cynthia Gomes, Joshua Stein, Ki-Bum Lee, Jae K Lee, Nagi G Ayad","doi":"10.1093/bioinformatics/btaf311","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Single-cell and spatial transcriptomics provide unprecedented insight into diseases. Pharmacotranscriptomic approaches are powerful tools that leverage gene expression data for drug repurposing and discovery. Multiple databases attempt to connect human cellular transcriptional responses to small molecules for use in transcriptome-based drug discovery efforts. However, preclinical research often requires in vivo experiments in non-human species, which makes utilizing such valuable resources difficult. To facilitate both human orthologous conversion of non-human transcriptomes and the application of pharmacotranscriptomic databases to pre-clinical research models, we introduce OrthologAL. OrthologAL interfaces with BioMart to access different gene sets from the Ensembl database, allowing for ortholog conversion without the need for user-generated code.</p><p><strong>Results: </strong>Researchers can input their single-cell or other high-dimensional gene expression data from any species as a Seurat object, and OrthologAL will output a human ortholog-converted Seurat object for download and use. To demonstrate the utility of this application, we tested OrthologAL using single-cell, single-nuclei, and spatial transcriptomic data derived from common preclinical models, including patient-derived orthotopic xenografts of medulloblastoma, and mouse and rat models of spinal cord injury. OrthologAL can convert these data types efficiently to that of corresponding orthologs while preserving the dimensional architecture of the original non-human expression data. OrthologAL will be broadly useful for the simple conversion of Seurat objects and for applying preclinical, high-dimensional transcriptomics data to functional human-derived small molecule predictions.</p><p><strong>Availability: </strong>OrthologAL is available for download as an R package with functions to launch the Shiny GUI at https://github.com/AyadLab/OrthologAL or via Zenodo at https://doi.org/10.5281/zenodo.15225041. The medulloblastoma single-cell transcriptomics data were downloaded from the NCBI Gene Expression Omnibus with the identifier GSE129730. 10X Visium data of medulloblastoma PDX mouse models from Vo et al. were acquired by contacting the authors, and the raw data are available from ArrayExpress under the identifier E-MTAB-11720. The single-cell and single-nuclei transcriptomics data of rat and mouse spinal-cord injury were acquired from the Gene Expression Omnibus under the identifiers GSE213240 and GSE234774.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Single-cell and spatial transcriptomics provide unprecedented insight into diseases. Pharmacotranscriptomic approaches are powerful tools that leverage gene expression data for drug repurposing and discovery. Multiple databases attempt to connect human cellular transcriptional responses to small molecules for use in transcriptome-based drug discovery efforts. However, preclinical research often requires in vivo experiments in non-human species, which makes utilizing such valuable resources difficult. To facilitate both human orthologous conversion of non-human transcriptomes and the application of pharmacotranscriptomic databases to pre-clinical research models, we introduce OrthologAL. OrthologAL interfaces with BioMart to access different gene sets from the Ensembl database, allowing for ortholog conversion without the need for user-generated code.

Results: Researchers can input their single-cell or other high-dimensional gene expression data from any species as a Seurat object, and OrthologAL will output a human ortholog-converted Seurat object for download and use. To demonstrate the utility of this application, we tested OrthologAL using single-cell, single-nuclei, and spatial transcriptomic data derived from common preclinical models, including patient-derived orthotopic xenografts of medulloblastoma, and mouse and rat models of spinal cord injury. OrthologAL can convert these data types efficiently to that of corresponding orthologs while preserving the dimensional architecture of the original non-human expression data. OrthologAL will be broadly useful for the simple conversion of Seurat objects and for applying preclinical, high-dimensional transcriptomics data to functional human-derived small molecule predictions.

Availability: OrthologAL is available for download as an R package with functions to launch the Shiny GUI at https://github.com/AyadLab/OrthologAL or via Zenodo at https://doi.org/10.5281/zenodo.15225041. The medulloblastoma single-cell transcriptomics data were downloaded from the NCBI Gene Expression Omnibus with the identifier GSE129730. 10X Visium data of medulloblastoma PDX mouse models from Vo et al. were acquired by contacting the authors, and the raw data are available from ArrayExpress under the identifier E-MTAB-11720. The single-cell and single-nuclei transcriptomics data of rat and mouse spinal-cord injury were acquired from the Gene Expression Omnibus under the identifiers GSE213240 and GSE234774.

Supplementary information: Supplementary data are available at Bioinformatics online.

正交:一个闪亮的应用质量意识的人性化非人类临床前高维基因表达数据。
动机:单细胞和空间转录组学提供了前所未有的疾病洞察。药物转录组学方法是利用基因表达数据进行药物再利用和发现的强大工具。多个数据库试图将人类细胞转录反应与小分子联系起来,用于基于转录组的药物发现工作。然而,临床前研究往往需要在非人类物种中进行体内实验,这使得利用这些宝贵的资源变得困难。为了促进非人类转录组的人类同源转换和药物转录组数据库在临床前研究模型中的应用,我们引入了OrthologAL。与BioMart的正交接口,从Ensembl数据库访问不同的基因集,允许在不需要用户生成代码的情况下进行正交转换。结果:研究人员可以输入任何物种的单细胞或其他高维基因表达数据作为Seurat对象,OrthologAL将输出一个人类ortholog转换的Seurat对象供下载和使用。为了证明这一应用的实用性,我们使用来自常见临床前模型的单细胞、单核和空间转录组数据对OrthologAL进行了测试,这些模型包括患者来源的髓母细胞瘤原位异种移植以及小鼠和大鼠脊髓损伤模型。OrthologAL可以有效地将这些数据类型转换为相应的OrthologAL数据类型,同时保留原始非人类表达数据的维结构。OrthologAL将广泛用于Seurat对象的简单转换,以及将临床前高维转录组学数据应用于功能性人类衍生小分子预测。可用性:OrthologAL可以作为R包下载,其中包含启动Shiny GUI的功能,下载地址为https://github.com/AyadLab/OrthologAL或通过Zenodo下载地址为https://doi.org/10.5281/zenodo.15225041。髓母细胞瘤单细胞转录组学数据从NCBI基因表达Omnibus下载,标识符为GSE129730。Vo等人的成神经管细胞瘤PDX小鼠模型的10X Visium数据是通过联系作者获得的,原始数据可从ArrayExpress获取,识别号为E-MTAB-11720。大鼠和小鼠脊髓损伤的单细胞和单核转录组学数据来自基因表达Omnibus,标识符为GSE213240和GSE234774。补充信息:补充数据可在生物信息学在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信