Synthetic biology design principles enable efficient bioproduction of Heparosan with low molecular weight and low polydispersion index for the biomedical industry.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Synthetic biology (Oxford, England) Pub Date : 2025-04-29 eCollection Date: 2025-01-01 DOI:10.1093/synbio/ysaf006
Yadira Boada, Marcelo Flores, Martin Stiebritz, Marco Córdova, Francisco Flores, Alejandro Vignoni
{"title":"Synthetic biology design principles enable efficient bioproduction of Heparosan with low molecular weight and low polydispersion index for the biomedical industry.","authors":"Yadira Boada, Marcelo Flores, Martin Stiebritz, Marco Córdova, Francisco Flores, Alejandro Vignoni","doi":"10.1093/synbio/ysaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Heparosan is a natural polymer with unique chemical and biological properties, that holds great promise for biomedical applications. The molecular weight (Mw) and polydispersion index (PDI) are critical factors influencing the performance of heparosan-based materials. Achieving precise control over the synthesis process to consistently produce heparosan with low Mw and low PDI can be challenging, as it requires tight regulation of reaction conditions, enzyme activity, and precursor concentrations. We propose a novel approach utilizing synthetic biology principles to precisely control heparosan biosynthesis in bacteria. Our strategy involves designing a biomolecular controller that can regulate the expression of genes involved in heparosan biosynthesis. This controller is activated by biosensors that detect heparosan precursors, allowing for fine-tuned control of the polymerization process. Through this approach, we foresee the implementation of this synthetic device, demonstrating the potential to produce low Mw and low PDI heparosan in the probiotic <i>E. coli</i> Nissle 1917 as a biosafe and biosecure biofactory. This study represents a significant advancement in the field of heparosan production, offering new opportunities for the development and manufacturing of biomaterials with tailored properties for diverse biomedical applications.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"10 1","pages":"ysaf006"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysaf006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Heparosan is a natural polymer with unique chemical and biological properties, that holds great promise for biomedical applications. The molecular weight (Mw) and polydispersion index (PDI) are critical factors influencing the performance of heparosan-based materials. Achieving precise control over the synthesis process to consistently produce heparosan with low Mw and low PDI can be challenging, as it requires tight regulation of reaction conditions, enzyme activity, and precursor concentrations. We propose a novel approach utilizing synthetic biology principles to precisely control heparosan biosynthesis in bacteria. Our strategy involves designing a biomolecular controller that can regulate the expression of genes involved in heparosan biosynthesis. This controller is activated by biosensors that detect heparosan precursors, allowing for fine-tuned control of the polymerization process. Through this approach, we foresee the implementation of this synthetic device, demonstrating the potential to produce low Mw and low PDI heparosan in the probiotic E. coli Nissle 1917 as a biosafe and biosecure biofactory. This study represents a significant advancement in the field of heparosan production, offering new opportunities for the development and manufacturing of biomaterials with tailored properties for diverse biomedical applications.

合成生物学设计原理使生物医学工业高效生产低分子量和低多分散指数的肝磷脂聚糖。
肝磷脂聚糖是一种天然聚合物,具有独特的化学和生物学特性,在生物医学应用方面具有很大的前景。分子量(Mw)和多分散指数(PDI)是影响肝磷脂基材料性能的关键因素。实现对合成过程的精确控制以持续生产低Mw和低PDI的肝磷脂糖是具有挑战性的,因为它需要严格调节反应条件、酶活性和前体浓度。我们提出了一种利用合成生物学原理精确控制细菌肝磷脂生物合成的新方法。我们的策略包括设计一种生物分子控制器,可以调节参与肝磷脂生物合成的基因的表达。该控制器由检测肝磷脂前体的生物传感器激活,允许对聚合过程进行微调控制。通过这种方法,我们预见了该合成装置的实施,证明了在益生菌E. coli Nissle 1917中生产低Mw和低PDI肝磷脂聚糖作为生物安全和生物安全的生物工厂的潜力。这项研究代表了肝素聚糖生产领域的重大进展,为开发和制造具有不同生物医学应用的定制性能的生物材料提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信