bamSliceR: a Bioconductor package for rapid, cross-cohort variant and allelic bias analysis.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-04-28 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf098
Yizhou Peter Huang, Lauren Harmon, Eve Deering-Gardner, Xiaotu Ma, Josiah Harsh, Zhaoyu Xue, Hong Wen, Marcel Ramos, Sean Davis, Timothy J Triche
{"title":"<i>bamSliceR</i>: a Bioconductor package for rapid, cross-cohort variant and allelic bias analysis.","authors":"Yizhou Peter Huang, Lauren Harmon, Eve Deering-Gardner, Xiaotu Ma, Josiah Harsh, Zhaoyu Xue, Hong Wen, Marcel Ramos, Sean Davis, Timothy J Triche","doi":"10.1093/bioadv/vbaf098","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The National Cancer Institute Genomic Data Commons (GDC) provides controlled access to sequencing data from thousands of subjects, enabling large-scale study of impactful genetic alterations such as simple and complex germline and structural variants. However, efficient analysis requires significant computational resources and expertise, especially when calling variants from raw sequence reads. To solve these problems, we developed <i>bamSliceR</i>, a R/bioconductor package that builds upon the <i>GenomicDataCommons</i> package to extract aligned sequence reads from cross-GDC meta-cohorts, followed by targeted analysis of variants and effects (including transcript-aware variant annotation from transcriptome-aligned GDC RNA data).</p><p><strong>Results: </strong>Here, we demonstrate population-scale genomic and transcriptomic analyses with minimal compute burden using <i>bamSliceR</i>, identifying recurrent, clinically relevant sequence, and structural variants in the TARGET acute myeloid leukemia (AML) and BEAT-AML cohorts. We then validate results in the (non-GDC) Leucegene cohort, demonstrating how the <i>bamSliceR</i> pipeline can be seamlessly applied to replicate findings in non-GDC cohorts. These variants directly yield clinically impactful and biologically testable hypotheses for mechanistic investigation.</p><p><strong>Availability and implementation: </strong><i>bamSliceR</i> has been submitted to the Bioconductor project, where it is presently under review, and is available on GitHub at https://github.com/trichelab/bamSliceR.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf098"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The National Cancer Institute Genomic Data Commons (GDC) provides controlled access to sequencing data from thousands of subjects, enabling large-scale study of impactful genetic alterations such as simple and complex germline and structural variants. However, efficient analysis requires significant computational resources and expertise, especially when calling variants from raw sequence reads. To solve these problems, we developed bamSliceR, a R/bioconductor package that builds upon the GenomicDataCommons package to extract aligned sequence reads from cross-GDC meta-cohorts, followed by targeted analysis of variants and effects (including transcript-aware variant annotation from transcriptome-aligned GDC RNA data).

Results: Here, we demonstrate population-scale genomic and transcriptomic analyses with minimal compute burden using bamSliceR, identifying recurrent, clinically relevant sequence, and structural variants in the TARGET acute myeloid leukemia (AML) and BEAT-AML cohorts. We then validate results in the (non-GDC) Leucegene cohort, demonstrating how the bamSliceR pipeline can be seamlessly applied to replicate findings in non-GDC cohorts. These variants directly yield clinically impactful and biologically testable hypotheses for mechanistic investigation.

Availability and implementation: bamSliceR has been submitted to the Bioconductor project, where it is presently under review, and is available on GitHub at https://github.com/trichelab/bamSliceR.

bamSliceR:用于快速、跨队列变异和等位基因偏倚分析的Bioconductor软件包。
动机:国家癌症研究所基因组数据共享(GDC)提供对来自数千个受试者的测序数据的控制访问,使大规模研究有影响的遗传改变,如简单和复杂的种系和结构变异成为可能。然而,高效的分析需要大量的计算资源和专业知识,特别是在调用原始序列读取的变体时。为了解决这些问题,我们开发了bamSliceR,这是一个基于GenomicDataCommons包的R/bioconductor包,用于从跨GDC meta-cohorts中提取对齐序列,然后对变体和效应进行有针对性的分析(包括转录组对齐GDC RNA数据的转录感知变体注释)。结果:在这里,我们展示了群体规模的基因组和转录组学分析,使用bamSliceR以最小的计算负担,在TARGET急性髓性白血病(AML)和BEAT-AML队列中识别复发的、临床相关的序列和结构变异。然后,我们在(非gdc) Leucegene队列中验证结果,展示了bamSliceR管道如何无缝应用于非gdc队列中复制研究结果。这些变异直接产生临床影响和生物学上可测试的机制研究假设。可用性和实现:bamSliceR已提交给Bioconductor项目,目前正在审查中,并可在GitHub上获得https://github.com/trichelab/bamSliceR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信