F Ribaldi, A J Mendes, I Boscolo Galazzo, V Natale, G Mathoux, M Pievani, K O Lovblad, M Scheffler, G B Frisoni, V Garibotto, F B Pizzini
{"title":"Agreement between early-phase amyloid-PET and pulsed arterial spin labeling in a memory clinic cohort.","authors":"F Ribaldi, A J Mendes, I Boscolo Galazzo, V Natale, G Mathoux, M Pievani, K O Lovblad, M Scheffler, G B Frisoni, V Garibotto, F B Pizzini","doi":"10.1007/s00109-025-02545-w","DOIUrl":null,"url":null,"abstract":"<p><p>Relative cerebral blood flow (rCBF), assessed using pulsed arterial spin labeling (pASL) MRI, and the standardized uptake value ratio (SUVr) in early-phase amyloid-PET (ePET) are used as proxies for brain perfusion. These methods have the potential to streamline clinical workflows and reduce the burden on patients by eliminating the need for additional procedures. While both techniques have shown good agreement with the gold standard for glucose metabolism assessment, F-fluorodeoxyglucose-PET, a direct comparison between them has yet to be fully clarified. This retrospective study aimed to compare perfusion-like data from pASL (rCBF) and ePET (SUVr) in a memory clinic cohort. We included 46 subjects (69 ± 8 years; 37 women) from the Geneva Memory Center (cognitively impaired-CI n = 29; cognitively unimpaired-CU n = 17), with available pASL and ePET. We evaluated the association between rCBF and SUVr values across 18 cortical and subcortical regions using linear regression and the within-subject coefficient of variation (wsCV). Regional differences between CU and CI groups were assessed using linear regression model corrected for age. We observed significant association between rCBF and SUVr in precuneus (β = 0.69, wsCV = 16.9), angular gyrus (β = 0.64, wsCV = 19.4), and hippocampus (β = 0.23, wsCV = 16.1). Additionally, significant differences in rCBF between CU and CI were also observed in the posterior cingulate, precuneus, calcarine, hippocampus, and composite (p < 0.05), while SUVr showed significant differences only in the hippocampus. Our findings indicate weak to moderate local correlations between the two techniques. However, both exhibited differing regional perfusion levels in CU and CI groups, with rCBF showing more regional differences between cognitive stages in comparison with SUVr. KEY MESSAGES: rCBF is assessed through pASL MRI and SUVr through ePET, both serving as proxies of brain perfusion. Weak to moderate associations between rCBF and SUVr were found in a number of brain regions. rCBF and SUVr differences between cognitive stages were observed mostly in cortical and subcortical regions respectively. Both techniques were able to identify AD perfusion-like differences expected in cognitively impaired vs unimpaired.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02545-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Relative cerebral blood flow (rCBF), assessed using pulsed arterial spin labeling (pASL) MRI, and the standardized uptake value ratio (SUVr) in early-phase amyloid-PET (ePET) are used as proxies for brain perfusion. These methods have the potential to streamline clinical workflows and reduce the burden on patients by eliminating the need for additional procedures. While both techniques have shown good agreement with the gold standard for glucose metabolism assessment, F-fluorodeoxyglucose-PET, a direct comparison between them has yet to be fully clarified. This retrospective study aimed to compare perfusion-like data from pASL (rCBF) and ePET (SUVr) in a memory clinic cohort. We included 46 subjects (69 ± 8 years; 37 women) from the Geneva Memory Center (cognitively impaired-CI n = 29; cognitively unimpaired-CU n = 17), with available pASL and ePET. We evaluated the association between rCBF and SUVr values across 18 cortical and subcortical regions using linear regression and the within-subject coefficient of variation (wsCV). Regional differences between CU and CI groups were assessed using linear regression model corrected for age. We observed significant association between rCBF and SUVr in precuneus (β = 0.69, wsCV = 16.9), angular gyrus (β = 0.64, wsCV = 19.4), and hippocampus (β = 0.23, wsCV = 16.1). Additionally, significant differences in rCBF between CU and CI were also observed in the posterior cingulate, precuneus, calcarine, hippocampus, and composite (p < 0.05), while SUVr showed significant differences only in the hippocampus. Our findings indicate weak to moderate local correlations between the two techniques. However, both exhibited differing regional perfusion levels in CU and CI groups, with rCBF showing more regional differences between cognitive stages in comparison with SUVr. KEY MESSAGES: rCBF is assessed through pASL MRI and SUVr through ePET, both serving as proxies of brain perfusion. Weak to moderate associations between rCBF and SUVr were found in a number of brain regions. rCBF and SUVr differences between cognitive stages were observed mostly in cortical and subcortical regions respectively. Both techniques were able to identify AD perfusion-like differences expected in cognitively impaired vs unimpaired.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.