Hemodynamic simulation and in vitro modeling of three-dimensional glomeruli at anatomical scale.

IF 4.1 2区 工程技术 Q1 MECHANICS
Physics of Fluids Pub Date : 2025-05-01 Epub Date: 2025-05-16 DOI:10.1063/5.0264128
Dongjune A Kim, Andres Armenta, Joshua C Vaughan, Mark Terasaki, Jonathan Himmelfarb, Ying Zheng
{"title":"Hemodynamic simulation and <i>in vitro</i> modeling of three-dimensional glomeruli at anatomical scale.","authors":"Dongjune A Kim, Andres Armenta, Joshua C Vaughan, Mark Terasaki, Jonathan Himmelfarb, Ying Zheng","doi":"10.1063/5.0264128","DOIUrl":null,"url":null,"abstract":"<p><p>The glomerulus is a critical filtration unit in the kidney, yet its complex three-dimensional architecture has long hindered a comprehensive understanding of its function and regulation. Here, we present an integrated framework that combines <i>in vivo</i> imaging based three-dimensional modeling, computational fluid dynamics simulations, and <i>in vitro</i> reconstruction to elucidate the structural and hemodynamic complexity of the glomerulus. Our analyses reveal that the inherent asymmetry between afferent and efferent arterioles is critical for establishing a precise pressure-flow relationship and regulating hemodynamics. We further successfully fabricated a perfusable, anatomically accurate mouse glomerulus within a microphysiological system, demonstrating proof-of-concept for perfusion analysis and vascularization. These findings establish a transformative platform for studying glomerular diseases and pave the way for therapeutic interventions.</p>","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"37 5","pages":"051907"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0264128","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The glomerulus is a critical filtration unit in the kidney, yet its complex three-dimensional architecture has long hindered a comprehensive understanding of its function and regulation. Here, we present an integrated framework that combines in vivo imaging based three-dimensional modeling, computational fluid dynamics simulations, and in vitro reconstruction to elucidate the structural and hemodynamic complexity of the glomerulus. Our analyses reveal that the inherent asymmetry between afferent and efferent arterioles is critical for establishing a precise pressure-flow relationship and regulating hemodynamics. We further successfully fabricated a perfusable, anatomically accurate mouse glomerulus within a microphysiological system, demonstrating proof-of-concept for perfusion analysis and vascularization. These findings establish a transformative platform for studying glomerular diseases and pave the way for therapeutic interventions.

三维肾小球血流动力学模拟及体外解剖模型的建立。
肾小球是肾脏中重要的滤过单位,但其复杂的三维结构长期以来阻碍了对其功能和调节的全面理解。在这里,我们提出了一个综合框架,结合了基于体内成像的三维建模,计算流体动力学模拟和体外重建来阐明肾小球的结构和血流动力学复杂性。我们的分析表明,传入和传出小动脉之间固有的不对称性对于建立精确的压力-流量关系和调节血流动力学至关重要。我们进一步成功地在微生理系统中制造了一个可灌注的、解剖学上准确的小鼠肾小球,证明了灌注分析和血管化的概念。这些发现为研究肾小球疾病建立了一个变革性的平台,并为治疗干预铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信