Dongjune A Kim, Andres Armenta, Joshua C Vaughan, Mark Terasaki, Jonathan Himmelfarb, Ying Zheng
{"title":"Hemodynamic simulation and <i>in vitro</i> modeling of three-dimensional glomeruli at anatomical scale.","authors":"Dongjune A Kim, Andres Armenta, Joshua C Vaughan, Mark Terasaki, Jonathan Himmelfarb, Ying Zheng","doi":"10.1063/5.0264128","DOIUrl":null,"url":null,"abstract":"<p><p>The glomerulus is a critical filtration unit in the kidney, yet its complex three-dimensional architecture has long hindered a comprehensive understanding of its function and regulation. Here, we present an integrated framework that combines <i>in vivo</i> imaging based three-dimensional modeling, computational fluid dynamics simulations, and <i>in vitro</i> reconstruction to elucidate the structural and hemodynamic complexity of the glomerulus. Our analyses reveal that the inherent asymmetry between afferent and efferent arterioles is critical for establishing a precise pressure-flow relationship and regulating hemodynamics. We further successfully fabricated a perfusable, anatomically accurate mouse glomerulus within a microphysiological system, demonstrating proof-of-concept for perfusion analysis and vascularization. These findings establish a transformative platform for studying glomerular diseases and pave the way for therapeutic interventions.</p>","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"37 5","pages":"051907"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0264128","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The glomerulus is a critical filtration unit in the kidney, yet its complex three-dimensional architecture has long hindered a comprehensive understanding of its function and regulation. Here, we present an integrated framework that combines in vivo imaging based three-dimensional modeling, computational fluid dynamics simulations, and in vitro reconstruction to elucidate the structural and hemodynamic complexity of the glomerulus. Our analyses reveal that the inherent asymmetry between afferent and efferent arterioles is critical for establishing a precise pressure-flow relationship and regulating hemodynamics. We further successfully fabricated a perfusable, anatomically accurate mouse glomerulus within a microphysiological system, demonstrating proof-of-concept for perfusion analysis and vascularization. These findings establish a transformative platform for studying glomerular diseases and pave the way for therapeutic interventions.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves