Arjun Singh, Patrick E Farmer, Jeffrey L Tully, Ruth S Waterman, Rodney A Gabriel
{"title":"Forecasting Surgical Bed Utilization: Architectural Design of a Machine Learning Pipeline Incorporating Predicted Length of Stay and Surgical Volume.","authors":"Arjun Singh, Patrick E Farmer, Jeffrey L Tully, Ruth S Waterman, Rodney A Gabriel","doi":"10.1007/s10916-025-02201-3","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to develop a machine learning model utilizing data from the electronic health record (EHR) to model length of stay and daily surgical volume, in order to subsequently predict daily surgical inpatient bed utilization. Machine learning is increasingly used to aid healthcare decision-making and resource allocation. Surgical inpatient bed utilization is a key metric of hospital efficiency and an ideal target for optimization. EHR data from all surgical cases over one year at a single institution was obtained. Data from the first 32 weeks of the year were used to train the model with the remaining data used to validate and test the models. Various machine learning approaches were explored to predict hospital length of stay and surgical volume. Seasonal Autoregressive Integrated Moving Average (SARIMA) was used to forecast daily surgical bed requirements. The root mean squared error (RMSE) was reported. For predicting bed utilization > 2 weeks in the future, our optimized models improved prediction from an RMSE of 43.1 to 24.4 beds. For predicting bed utilization in 2 weeks, our optimized models improved prediction from an RMSE of 42.6 to 24.8 beds. Finally, predicting bed utilization same day demonstrated an RMSE of 22.7 beds. We described the architecture of a machine learning approach to forecast surgical bed utilization. Forecasting use of surgical resources may decrease stress on a hospital system through more accurate predicting of the ebbs and flows of hospital needs.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"67"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02201-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to develop a machine learning model utilizing data from the electronic health record (EHR) to model length of stay and daily surgical volume, in order to subsequently predict daily surgical inpatient bed utilization. Machine learning is increasingly used to aid healthcare decision-making and resource allocation. Surgical inpatient bed utilization is a key metric of hospital efficiency and an ideal target for optimization. EHR data from all surgical cases over one year at a single institution was obtained. Data from the first 32 weeks of the year were used to train the model with the remaining data used to validate and test the models. Various machine learning approaches were explored to predict hospital length of stay and surgical volume. Seasonal Autoregressive Integrated Moving Average (SARIMA) was used to forecast daily surgical bed requirements. The root mean squared error (RMSE) was reported. For predicting bed utilization > 2 weeks in the future, our optimized models improved prediction from an RMSE of 43.1 to 24.4 beds. For predicting bed utilization in 2 weeks, our optimized models improved prediction from an RMSE of 42.6 to 24.8 beds. Finally, predicting bed utilization same day demonstrated an RMSE of 22.7 beds. We described the architecture of a machine learning approach to forecast surgical bed utilization. Forecasting use of surgical resources may decrease stress on a hospital system through more accurate predicting of the ebbs and flows of hospital needs.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.