Activation of the mechanosensitive ion channels TRPV4 and PIEZO1 downregulates key regulatory systems in the chondrocyte mechanome.

IF 2.1 4区 医学 Q3 CELL BIOLOGY
Connective Tissue Research Pub Date : 2025-07-01 Epub Date: 2025-05-21 DOI:10.1080/03008207.2025.2498512
Daniel R Palmer, Robert Nims, Bo Zhang, Farshid Guilak
{"title":"Activation of the mechanosensitive ion channels TRPV4 and PIEZO1 downregulates key regulatory systems in the chondrocyte mechanome.","authors":"Daniel R Palmer, Robert Nims, Bo Zhang, Farshid Guilak","doi":"10.1080/03008207.2025.2498512","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chondrocytes, the only native cell type in cartilage, use mechanosensitive ion channels such as Transient Receptor Potential Vanilloid 4 (TRPV4) and PIEZO1 to transduce mechanical forces into transcriptomic changes that regulate cell behavior under both physiologic and pathologic conditions. Recent work has identified and characterized the differentially expressed genes (DEGs) that are upregulated following TRPV4 or PIEZO1 activation, but the transcriptomic systems downregulated by these ion channels also represent an important aspect of the chondrocyte regulatory process that remains poorly studied.</p><p><strong>Methods: </strong>Here, we utilized previously established bulk RNAsequencing libraries to analyze the transcriptomes downregulated by activation of TRPV4 and PIEZO1 through differential gene expression analysis (using DESeq2), Gene Ontology, RT-qPCR, and Weighted Gene Correlation Network Analysis (WGCNA).</p><p><strong>Results: </strong>TRPV4 and PIEZO1 activations downregulated largely unique sets of DEGs, though the set of DEGs downregulated by TRPV4 exhibited a notable overlap with genes downregulated by treatment with inflammatory mediator Interleukin-1 (IL-1). The DEG set downregulated by PIEZO1 activation included genes associated with the G2/M cell cycle checkpoint, a system that checks cells for DNA damage prior to entry into mitosis, and this result was confirmed with RT-qPCR. WGCNA revealed modules of gene regulation negatively correlated with TRPV4, PIEZO1, and IL-1, outlining how these downregulated DEGs may interact to form gene regulatory networks (GRNs).</p><p><strong>Conclusion: </strong>This study complements previous work in describing the full mechanosensitive transcriptome (or \"mechanome\") of differential gene expression in response to activation of mechanosensitive ion channels TRPV4 and PIEZO1 Q2 and suggests potential avenues for future therapeutic treatment design.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"239-262"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2498512","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chondrocytes, the only native cell type in cartilage, use mechanosensitive ion channels such as Transient Receptor Potential Vanilloid 4 (TRPV4) and PIEZO1 to transduce mechanical forces into transcriptomic changes that regulate cell behavior under both physiologic and pathologic conditions. Recent work has identified and characterized the differentially expressed genes (DEGs) that are upregulated following TRPV4 or PIEZO1 activation, but the transcriptomic systems downregulated by these ion channels also represent an important aspect of the chondrocyte regulatory process that remains poorly studied.

Methods: Here, we utilized previously established bulk RNAsequencing libraries to analyze the transcriptomes downregulated by activation of TRPV4 and PIEZO1 through differential gene expression analysis (using DESeq2), Gene Ontology, RT-qPCR, and Weighted Gene Correlation Network Analysis (WGCNA).

Results: TRPV4 and PIEZO1 activations downregulated largely unique sets of DEGs, though the set of DEGs downregulated by TRPV4 exhibited a notable overlap with genes downregulated by treatment with inflammatory mediator Interleukin-1 (IL-1). The DEG set downregulated by PIEZO1 activation included genes associated with the G2/M cell cycle checkpoint, a system that checks cells for DNA damage prior to entry into mitosis, and this result was confirmed with RT-qPCR. WGCNA revealed modules of gene regulation negatively correlated with TRPV4, PIEZO1, and IL-1, outlining how these downregulated DEGs may interact to form gene regulatory networks (GRNs).

Conclusion: This study complements previous work in describing the full mechanosensitive transcriptome (or "mechanome") of differential gene expression in response to activation of mechanosensitive ion channels TRPV4 and PIEZO1 Q2 and suggests potential avenues for future therapeutic treatment design.

机械敏感离子通道TRPV4和PIEZO1的激活下调了软骨细胞机械机制中的关键调控系统。
背景:软骨细胞是软骨中唯一的天然细胞类型,利用瞬时受体电位香草样蛋白4 (TRPV4)和PIEZO1等机械敏感离子通道将机械力转化为转录组变化,在生理和病理条件下调节细胞行为。最近的工作已经确定并表征了TRPV4或PIEZO1激活后上调的差异表达基因(DEGs),但这些离子通道下调的转录组系统也代表了软骨细胞调节过程的一个重要方面,但研究仍然很少。方法:利用先前建立的大量rnas测序文库,通过差异基因表达分析(使用DESeq2)、基因本体、RT-qPCR和加权基因相关网络分析(WGCNA)分析TRPV4和PIEZO1激活下调的转录组。结果:TRPV4和PIEZO1的激活在很大程度上下调了独特的deg组,尽管TRPV4下调的deg组与炎症介质白细胞介素-1 (IL-1)治疗下调的基因有显著的重叠。PIEZO1激活下调的DEG集合包括与G2/M细胞周期检查点相关的基因,G2/M细胞周期检查点是一种检查细胞进入有丝分裂前DNA损伤的系统,这一结果被RT-qPCR证实。WGCNA揭示了与TRPV4、PIEZO1和IL-1负相关的基因调控模块,概述了这些下调的deg如何相互作用形成基因调控网络(grn)。结论:该研究补充了先前的工作,描述了响应机械敏感离子通道TRPV4和PIEZO1 Q2激活的差异基因表达的全机械敏感转录组(或“机械组”),并为未来的治疗设计提供了潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信