Yeqing Xu, Abuduheiremu Awati, Shan Zhou, Runhao Zhang, Xin Zhang, Hui Zeng, Yaxin Guo, Yuanbo Song, Chengmin Hu, Lei Xie, Qirui Liang, Kang Liang, Lei Jiang, Dongyuan Zhao, Biao Kong
{"title":"Concentration Energy Ion Channels with Molecular-Structure Dual Recognition for Sustainable Environmental Monitoring.","authors":"Yeqing Xu, Abuduheiremu Awati, Shan Zhou, Runhao Zhang, Xin Zhang, Hui Zeng, Yaxin Guo, Yuanbo Song, Chengmin Hu, Lei Xie, Qirui Liang, Kang Liang, Lei Jiang, Dongyuan Zhao, Biao Kong","doi":"10.1021/jacs.5c03283","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticides are vital for crop and seafood production but leave persistent residues that pose risks to ecosystems and human health through bioaccumulation. The detection of pesticide residues requires highly sensitive and selective technologies. Herein, a nanochannel sensor capable of dual recognition of ionic charge and molecular conformation based on molecular imprinting technology (MIT) is presented, offering a significant improvement in selectivity and sensitivity over traditional nanopore sensors. The MIT-based nanochannels with imprinting sites tailored to pesticide molecules go beyond recognizing the molecular size and surface functional groups, enabling the detection of molecular configurations. In this research, the approach enables the detection of 10 pesticide molecules with detection limits (LODs) ranging from 12.9 to 26.9 pM, achieving two orders of magnitude lower than fluorescence-based methods. Density functional theory (DFT) and molecular dynamics (MD) simulations revealed hydrogen bonding as the dominant interaction in the imprinting process. This versatile nanochannel construction method, proposed for the first time, provides dual recognition capabilities and is expected to advance nanochannel sensing while promoting sustainable environmental development.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03283","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pesticides are vital for crop and seafood production but leave persistent residues that pose risks to ecosystems and human health through bioaccumulation. The detection of pesticide residues requires highly sensitive and selective technologies. Herein, a nanochannel sensor capable of dual recognition of ionic charge and molecular conformation based on molecular imprinting technology (MIT) is presented, offering a significant improvement in selectivity and sensitivity over traditional nanopore sensors. The MIT-based nanochannels with imprinting sites tailored to pesticide molecules go beyond recognizing the molecular size and surface functional groups, enabling the detection of molecular configurations. In this research, the approach enables the detection of 10 pesticide molecules with detection limits (LODs) ranging from 12.9 to 26.9 pM, achieving two orders of magnitude lower than fluorescence-based methods. Density functional theory (DFT) and molecular dynamics (MD) simulations revealed hydrogen bonding as the dominant interaction in the imprinting process. This versatile nanochannel construction method, proposed for the first time, provides dual recognition capabilities and is expected to advance nanochannel sensing while promoting sustainable environmental development.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.