{"title":"Astrocyte Dysfunctions in Obsessive Compulsive Disorder: Rethinking Neurobiology and Therapeutic Targets","authors":"Laurine Gonzalez, Paola Bezzi","doi":"10.1111/jnc.70092","DOIUrl":null,"url":null,"abstract":"<p>Obsessive-compulsive disorder (OCD) has long been conceptualized as a neuron-centric disorder of cortico-striato-thalamo-cortical (CSTC) circuit dysregulation. However, a growing body of evidence is now reframing this narrative, placing astrocytes—once relegated to passive support roles—at the center of OCD pathophysiology. Astrocytes are critical regulators of glutamate and GABA homeostasis, calcium signaling, and synaptic plasticity, all of which are disrupted in OCD. Recent high-resolution molecular and proteomic studies reveal that specific astrocyte subpopulations, including <i>Crym</i>-positive astrocytes, directly shape excitatory/inhibitory balance and control perseverative behaviors by modulating presynaptic inputs from the orbitofrontal cortex. Disruptions in astrocytic neurotransmitter clearance and dopamine metabolism amplify CSTC circuit hyperactivity and reinforce compulsions. This review reframes OCD as a disorder of neuro-glial dysfunctions, proposing that targeting astrocytic signaling, metabolism, and structural plasticity may unlock transformative therapeutic strategies. By integrating human and animal data, we advocate for a glial-centric model of OCD that not only enhances mechanistic understanding but also opens new frontiers for precision treatment.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70092","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obsessive-compulsive disorder (OCD) has long been conceptualized as a neuron-centric disorder of cortico-striato-thalamo-cortical (CSTC) circuit dysregulation. However, a growing body of evidence is now reframing this narrative, placing astrocytes—once relegated to passive support roles—at the center of OCD pathophysiology. Astrocytes are critical regulators of glutamate and GABA homeostasis, calcium signaling, and synaptic plasticity, all of which are disrupted in OCD. Recent high-resolution molecular and proteomic studies reveal that specific astrocyte subpopulations, including Crym-positive astrocytes, directly shape excitatory/inhibitory balance and control perseverative behaviors by modulating presynaptic inputs from the orbitofrontal cortex. Disruptions in astrocytic neurotransmitter clearance and dopamine metabolism amplify CSTC circuit hyperactivity and reinforce compulsions. This review reframes OCD as a disorder of neuro-glial dysfunctions, proposing that targeting astrocytic signaling, metabolism, and structural plasticity may unlock transformative therapeutic strategies. By integrating human and animal data, we advocate for a glial-centric model of OCD that not only enhances mechanistic understanding but also opens new frontiers for precision treatment.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.