{"title":"β-Sitosterol Ameliorates Ulcerative Colitis Through Modulation of the AMPK/MLCK Anti-Inflammatory Pathway","authors":"Yuansen Zhang, Xiaosheng Jin, Huanhuan Xia, Xiaoqiu Wu, Wenjun Chen, Mengxiao Zhuang, Sensen Tang","doi":"10.1002/jbt.70287","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ulcerative colitis (UC), a common inflammatory bowel disease, has become increasingly prevalent worldwide, posing significant health challenges. This study explored the anti-inflammatory effects of β-sitosterol on UC and its underlying molecular mechanisms. Using a dextran sulfate sodium (DSS)-induced colitis model in male C57BL/6 mice, the therapeutic potential of β-sitosterol at low (2 mg/kg) and high (6 mg/kg) doses was compared with sulfasalazine (300 mg/kg) as a positive control. Disease progression was assessed through Disease Activity Index (DAI) scores, histological analysis, and inflammatory marker expression. β-sitosterol significantly ameliorated colonic inflammation, demonstrated by lower DAI scores, improved histological architecture, and reduced levels of inflammatory mediators, including NO, MPO, IL-6, and iNOS, while upregulating the anti-inflammatory cytokine IL-10. Mechanistically, β-sitosterol promoted AMP-activated protein kinase (AMPK) expression and suppressed myosin light chain kinase (MLCK) expression. These findings were validated in vitro using LPS-stimulated Caco-2 cells, where β-sitosterol decreased inflammatory marker levels and modulated AMPK/MLCK signaling. Notably, the use of Compound C, an AMPK inhibitor, reversed these effects by suppressing AMPK activity and restoring MLCK expression, confirming that the anti-inflammatory actions of β-sitosterol are AMPK-dependent. In conclusion, this study highlights the therapeutic potential of β-sitosterol in UC through modulation of the AMPK/MLCK signaling pathway. These findings not only deepen our understanding of β-sitosterol's anti-inflammatory properties but also suggest its potential in developing novel AMPK-targeted therapies for inflammatory bowel disease management.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70287","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ulcerative colitis (UC), a common inflammatory bowel disease, has become increasingly prevalent worldwide, posing significant health challenges. This study explored the anti-inflammatory effects of β-sitosterol on UC and its underlying molecular mechanisms. Using a dextran sulfate sodium (DSS)-induced colitis model in male C57BL/6 mice, the therapeutic potential of β-sitosterol at low (2 mg/kg) and high (6 mg/kg) doses was compared with sulfasalazine (300 mg/kg) as a positive control. Disease progression was assessed through Disease Activity Index (DAI) scores, histological analysis, and inflammatory marker expression. β-sitosterol significantly ameliorated colonic inflammation, demonstrated by lower DAI scores, improved histological architecture, and reduced levels of inflammatory mediators, including NO, MPO, IL-6, and iNOS, while upregulating the anti-inflammatory cytokine IL-10. Mechanistically, β-sitosterol promoted AMP-activated protein kinase (AMPK) expression and suppressed myosin light chain kinase (MLCK) expression. These findings were validated in vitro using LPS-stimulated Caco-2 cells, where β-sitosterol decreased inflammatory marker levels and modulated AMPK/MLCK signaling. Notably, the use of Compound C, an AMPK inhibitor, reversed these effects by suppressing AMPK activity and restoring MLCK expression, confirming that the anti-inflammatory actions of β-sitosterol are AMPK-dependent. In conclusion, this study highlights the therapeutic potential of β-sitosterol in UC through modulation of the AMPK/MLCK signaling pathway. These findings not only deepen our understanding of β-sitosterol's anti-inflammatory properties but also suggest its potential in developing novel AMPK-targeted therapies for inflammatory bowel disease management.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.