Marco Berrettini, Christian Martin Hennig, Cinzia Viroli
{"title":"The quantile-based classifier with variable-wise parameters","authors":"Marco Berrettini, Christian Martin Hennig, Cinzia Viroli","doi":"10.1002/cjs.11837","DOIUrl":null,"url":null,"abstract":"<p>Quantile-based classifiers can classify high-dimensional observations by minimizing a discrepancy of an observation to a class based on suitable quantiles of the within-class distributions, corresponding to a unique percentage for all variables. The present work extends these classifiers by introducing a way to determine potentially different optimal percentages for different variables. Furthermore, a variable-wise scale parameter is introduced. A simple greedy algorithm to estimate the parameters is proposed. Their consistency in a nonparametric setting is proved. Experiments using artificially generated and real data confirm the potential of the quantile-based classifier with variable-wise parameters.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"53 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11837","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantile-based classifiers can classify high-dimensional observations by minimizing a discrepancy of an observation to a class based on suitable quantiles of the within-class distributions, corresponding to a unique percentage for all variables. The present work extends these classifiers by introducing a way to determine potentially different optimal percentages for different variables. Furthermore, a variable-wise scale parameter is introduced. A simple greedy algorithm to estimate the parameters is proposed. Their consistency in a nonparametric setting is proved. Experiments using artificially generated and real data confirm the potential of the quantile-based classifier with variable-wise parameters.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.