Peter Athron, Csaba Balázs, Andrew Fowlie, Lachlan Morris, William Searle, Yang Xiao, Yang Zhang
{"title":"PhaseTracer2: from the effective potential to gravitational waves","authors":"Peter Athron, Csaba Balázs, Andrew Fowlie, Lachlan Morris, William Searle, Yang Xiao, Yang Zhang","doi":"10.1140/epjc/s10052-025-14258-y","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the prospect of detecting gravitational waves sourced from a strongly first-order cosmological phase transition has emerged as one of the most exciting frontiers of gravitational wave astronomy. Cosmological phase transitions are an essential ingredient in the Standard Model of particle cosmology, and help explain the mechanism for creation of matter in the early Universe, provide insights into fundamental theories of physics, and shed light on the nature of dark matter. This underscores the significance of developing robust end-to-end tools for determining the resulting gravitational waves from these phase transitions. In this article we present <span>PhaseTracer2</span>, an improved version of the <span>C++</span> software package <span>PhaseTracer</span>, designed for mapping cosmological phases and transitions in Standard Model extensions of multiple scalar fields. Building on the robust framework of its predecessor, <span>PhaseTracer2</span> extends its capabilities by including new features crucial for a more comprehensive analysis of cosmological phase transitions. It can calculate more complex properties, such as the bounce action through the path deformation method or an interface with <span>BubbleProfiler</span>, thermodynamic parameters, and gravitational wave spectra. Its applicability has also been broadened via incorporating the dimensionally reduced effective potential for models obtained from <span>DRalgo</span>, as well as calculations in the <span>\\(\\overline{\\text {MS}}\\)</span> and OS-like renormalisation schemes. This modular, flexible, and practical upgrade retains the speed and stability of the original <span>PhaseTracer</span>, while significantly expanding its utility.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14258-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14258-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the prospect of detecting gravitational waves sourced from a strongly first-order cosmological phase transition has emerged as one of the most exciting frontiers of gravitational wave astronomy. Cosmological phase transitions are an essential ingredient in the Standard Model of particle cosmology, and help explain the mechanism for creation of matter in the early Universe, provide insights into fundamental theories of physics, and shed light on the nature of dark matter. This underscores the significance of developing robust end-to-end tools for determining the resulting gravitational waves from these phase transitions. In this article we present PhaseTracer2, an improved version of the C++ software package PhaseTracer, designed for mapping cosmological phases and transitions in Standard Model extensions of multiple scalar fields. Building on the robust framework of its predecessor, PhaseTracer2 extends its capabilities by including new features crucial for a more comprehensive analysis of cosmological phase transitions. It can calculate more complex properties, such as the bounce action through the path deformation method or an interface with BubbleProfiler, thermodynamic parameters, and gravitational wave spectra. Its applicability has also been broadened via incorporating the dimensionally reduced effective potential for models obtained from DRalgo, as well as calculations in the \(\overline{\text {MS}}\) and OS-like renormalisation schemes. This modular, flexible, and practical upgrade retains the speed and stability of the original PhaseTracer, while significantly expanding its utility.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.