Charges in light cones and quenched infrared radiation

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Detlev Buchholz, Fabio Ciolli, Giuseppe Ruzzi, Ezio Vasselli
{"title":"Charges in light cones and quenched infrared radiation","authors":"Detlev Buchholz,&nbsp;Fabio Ciolli,&nbsp;Giuseppe Ruzzi,&nbsp;Ezio Vasselli","doi":"10.1007/s11005-025-01942-z","DOIUrl":null,"url":null,"abstract":"<div><p>The creation of electrically charged states and the resulting electromagnetic fields are considered in spacetime regions in which such experiments can actually be carried out, namely in future-directed light cones. Under the simplifying assumption of external charges, charged states are formed from neutral pairs of opposite charges, with one charge being shifted to light-like infinity. It thereby escapes observation. Despite the fact that this charge moves asymptotically at the speed of light, the resulting electromagnetic field has a well-defined energy operator that is bounded from below. Moreover, due to the spatiotemporal restrictions, the transverse electromagnetic field (the radiation) has no infrared singularities in the light cone. They are quenched and the observed radiation can be described by states in the Fock space of photons. The longitudinal field between the charges (giving rise to Gauss’s law) disappears for inertial observers in an instant. This is consistent with the fact that the underlying longitudinal photons do not manifest themselves as genuine particles. The results show that the restrictions of operations and observations to light cones, which are dictated by the arrow of time, amount to a Lorentz-invariant infrared cutoff.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01942-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01942-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The creation of electrically charged states and the resulting electromagnetic fields are considered in spacetime regions in which such experiments can actually be carried out, namely in future-directed light cones. Under the simplifying assumption of external charges, charged states are formed from neutral pairs of opposite charges, with one charge being shifted to light-like infinity. It thereby escapes observation. Despite the fact that this charge moves asymptotically at the speed of light, the resulting electromagnetic field has a well-defined energy operator that is bounded from below. Moreover, due to the spatiotemporal restrictions, the transverse electromagnetic field (the radiation) has no infrared singularities in the light cone. They are quenched and the observed radiation can be described by states in the Fock space of photons. The longitudinal field between the charges (giving rise to Gauss’s law) disappears for inertial observers in an instant. This is consistent with the fact that the underlying longitudinal photons do not manifest themselves as genuine particles. The results show that the restrictions of operations and observations to light cones, which are dictated by the arrow of time, amount to a Lorentz-invariant infrared cutoff.

光锥中的电荷和熄灭的红外辐射
带电状态的产生和由此产生的电磁场是在这样的实验实际上可以进行的时空区域,即在未来定向光锥中考虑的。在外部电荷的简化假设下,电荷态是由相反电荷的中性对形成的,其中一个电荷被移到类光无穷大。因此它逃避了观察。尽管电荷以光速渐近移动,但由此产生的电磁场具有一个定义良好的能量算符,它从下面有界。此外,由于时空的限制,横向电磁场(辐射)在光锥内不存在红外奇点。它们被淬灭,观测到的辐射可以用光子的Fock空间中的状态来描述。对于惯性观测者来说,电荷之间的纵向场(产生高斯定律)在瞬间消失了。这与潜在的纵向光子并不表现为真正的粒子这一事实是一致的。结果表明,操作和观测对光锥的限制是由时间箭头决定的,相当于洛伦兹不变的红外截止。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信