{"title":"High-performance in-vacuum optical system for quantum optics experiments in a Penning-trap","authors":"Joaquín Berrocal, Daniel Rodríguez","doi":"10.1140/epjqt/s40507-025-00357-y","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate measurements with implications in many branches of physics have been accessed using conventional techniques in Penning traps within a temperature regime where each eigenmotion of a charged particle is still a classical harmonic oscillator. Cooling the particle directly or indirectly with lasers allows reaching the quantum regime of each oscillator, controlling subtle effects in the precision frontier by detecting photons instead of electric currents. In this paper, we present a new in-vacuum optical system designed to detect 397-nm fluorescence photons from individual calcium ions and Coulomb crystals in a 7-T Penning trap. Based on the outcome of computer simulations, our design shows diffraction-limited performance. The system has been characterized using a single laser-cooled ion as a point-like source, reaching a final resolution of 3.69(3) <i>μ</i>m and 2.75(3) <i>μ</i>m for the trap’s axial and radial directions, respectively, after correcting aberrations.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00357-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00357-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate measurements with implications in many branches of physics have been accessed using conventional techniques in Penning traps within a temperature regime where each eigenmotion of a charged particle is still a classical harmonic oscillator. Cooling the particle directly or indirectly with lasers allows reaching the quantum regime of each oscillator, controlling subtle effects in the precision frontier by detecting photons instead of electric currents. In this paper, we present a new in-vacuum optical system designed to detect 397-nm fluorescence photons from individual calcium ions and Coulomb crystals in a 7-T Penning trap. Based on the outcome of computer simulations, our design shows diffraction-limited performance. The system has been characterized using a single laser-cooled ion as a point-like source, reaching a final resolution of 3.69(3) μm and 2.75(3) μm for the trap’s axial and radial directions, respectively, after correcting aberrations.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.