Characterization and assessment of anisotropic constitutive models using the flat punch hole expansion test

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
A. Narayanan, J. Arciero, C. Tolton, C. Butcher
{"title":"Characterization and assessment of anisotropic constitutive models using the flat punch hole expansion test","authors":"A. Narayanan,&nbsp;J. Arciero,&nbsp;C. Tolton,&nbsp;C. Butcher","doi":"10.1007/s12289-025-01908-5","DOIUrl":null,"url":null,"abstract":"<div><p>Flat punch hole expansion tests are valuable for anisotropic plasticity model evaluation sine they activate a spectrum of tensile stress states across all in-plane material orientations. Pressure-independent yield functions with an associated flow rule typically overlook the state of plane strain tension (PST) during their calibration. Studies have shown that PST occurs near a principal stress ratio of 1:2 for materials that approximately follow deviatoric plasticity but this plane strain constraint (PSC) has been largely overlooked in anisotropic yield function calibration. This study proposes an efficient methodology to characterize and calibrate associated deviatoric plasticity models for materials with a broad range of anisotropy and hardening characteristics including AA5182-O and AA7075-T6 aluminum, and DC04 and 980GEN3 steels. The PST response was evaluated from notch tests using an inverse finite-element analysis approach with correlations provided when cruciform or notch test data is unavailable. The isotropic hardening assumption was evaluated to large strains by determining the stress response from analysis of area of the neck in tensile tests. The anisotropic Yld2000 and Yld2004 yield functions were calibrated to enforce the PSC, ensuring a zero plastic strain increment in directions without a deviatoric stress. The isotropic Hosford and quadratic Hill-48 functions, which universally satisfy and violate the PSC respectively, were also considered. Yield functions that enforced the PSC accurately predicted the global forces, strains, and PST locations in flat punch hole expansion simulations. In contrast, the Hill-48 model failed to accurately predict the radial distance from the hole in PST where the minor strain vanished, highlighting the importance of considering plane strain data for yield function calibration.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01908-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Flat punch hole expansion tests are valuable for anisotropic plasticity model evaluation sine they activate a spectrum of tensile stress states across all in-plane material orientations. Pressure-independent yield functions with an associated flow rule typically overlook the state of plane strain tension (PST) during their calibration. Studies have shown that PST occurs near a principal stress ratio of 1:2 for materials that approximately follow deviatoric plasticity but this plane strain constraint (PSC) has been largely overlooked in anisotropic yield function calibration. This study proposes an efficient methodology to characterize and calibrate associated deviatoric plasticity models for materials with a broad range of anisotropy and hardening characteristics including AA5182-O and AA7075-T6 aluminum, and DC04 and 980GEN3 steels. The PST response was evaluated from notch tests using an inverse finite-element analysis approach with correlations provided when cruciform or notch test data is unavailable. The isotropic hardening assumption was evaluated to large strains by determining the stress response from analysis of area of the neck in tensile tests. The anisotropic Yld2000 and Yld2004 yield functions were calibrated to enforce the PSC, ensuring a zero plastic strain increment in directions without a deviatoric stress. The isotropic Hosford and quadratic Hill-48 functions, which universally satisfy and violate the PSC respectively, were also considered. Yield functions that enforced the PSC accurately predicted the global forces, strains, and PST locations in flat punch hole expansion simulations. In contrast, the Hill-48 model failed to accurately predict the radial distance from the hole in PST where the minor strain vanished, highlighting the importance of considering plane strain data for yield function calibration.

利用平冲孔膨胀试验表征和评价各向异性本构模型
扁冲孔膨胀试验对于各向异性塑性模型评估是有价值的,因为它们激活了所有平面内材料取向的拉应力状态谱。具有相关流动规则的压力无关屈服函数在其校准过程中通常忽略了平面应变张力(PST)状态。研究表明,对于近似遵循偏塑性的材料,PST发生在主应力比为1:2附近,但在各向异性屈服函数校准中,这种平面应变约束(PSC)在很大程度上被忽略了。本研究提出了一种有效的方法来表征和校准具有广泛各向异性和硬化特性的材料的相关偏差塑性模型,包括AA5182-O和AA7075-T6铝,以及DC04和980GEN3钢。在十字形或缺口试验数据不可用的情况下,使用逆有限元分析方法对缺口试验的PST响应进行评估。通过对拉伸试验中颈部区域的应力响应分析,对大应变下的各向同性硬化假设进行了评价。校正了各向异性的Yld2000和Yld2004屈服函数以执行PSC,确保在没有偏应力的方向上零塑性应变增量。考虑了普遍满足PSC和普遍违反PSC的各向同性Hosford函数和二次型Hill-48函数。在平面冲孔扩展模拟中,执行PSC的屈服函数准确地预测了全局力、应变和PST位置。相比之下,Hill-48模型未能准确预测小应变消失的PST孔的径向距离,突出了考虑平面应变数据对屈服函数校准的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信