{"title":"Experimental and numerical investigations into tensile and compressive behavior of radial countersunk screw lap joints","authors":"Shuo Zhang, Ning Guo, Chao Xu","doi":"10.1016/j.ijnonlinmec.2025.105159","DOIUrl":null,"url":null,"abstract":"<div><div>Radial countersunk screw lap joints are widely employed in aerospace vehicles to connect various cabin sections. These joints experience complex flight loads, leading to nonlinear deformation and strain behaviors due to the contact and friction mechanisms at the joint interfaces. To gain a deeper understanding of the nonlinear mechanical behavior of such joints, this study conducts static tension and compression tests, complemented by nonlinear finite element simulations. Initially, typical radial countersunk screw lap joint specimens are fabricated and tested under tension and compression loads using an MTS universal testing machine. A preliminary analysis of the load-deformation relationship is performed based on the experimental data. Subsequently, a numerical model is developed using the nonlinear finite element method. This model is validated against experimental results and utilized to predict the evolution of contact behavior and the distribution of stress/strain within the specimens. Furthermore, a parametric analysis is conducted to investigate the influence of key design parameters on the joint's mechanical behavior. The findings indicate that the nonlinear mechanical behavior primarily stems from changes in the contact state between different components, while the differences in tensile and compressive behaviors are driven by variations in contact stiffness. Additionally, the size of the screw-hole clearance and assembly clearance significantly impacts the slip behavior observed in the load-displacement curves. Variations in screw preload and lap length have an important effect on the initial stiffness of the joint. These insights provide a foundation for optimizing the design and performance of radial countersunk screw lap joints for aerospace applications.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"177 ","pages":"Article 105159"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225001477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Radial countersunk screw lap joints are widely employed in aerospace vehicles to connect various cabin sections. These joints experience complex flight loads, leading to nonlinear deformation and strain behaviors due to the contact and friction mechanisms at the joint interfaces. To gain a deeper understanding of the nonlinear mechanical behavior of such joints, this study conducts static tension and compression tests, complemented by nonlinear finite element simulations. Initially, typical radial countersunk screw lap joint specimens are fabricated and tested under tension and compression loads using an MTS universal testing machine. A preliminary analysis of the load-deformation relationship is performed based on the experimental data. Subsequently, a numerical model is developed using the nonlinear finite element method. This model is validated against experimental results and utilized to predict the evolution of contact behavior and the distribution of stress/strain within the specimens. Furthermore, a parametric analysis is conducted to investigate the influence of key design parameters on the joint's mechanical behavior. The findings indicate that the nonlinear mechanical behavior primarily stems from changes in the contact state between different components, while the differences in tensile and compressive behaviors are driven by variations in contact stiffness. Additionally, the size of the screw-hole clearance and assembly clearance significantly impacts the slip behavior observed in the load-displacement curves. Variations in screw preload and lap length have an important effect on the initial stiffness of the joint. These insights provide a foundation for optimizing the design and performance of radial countersunk screw lap joints for aerospace applications.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.