José Eduardo H. da Silva, Heder S. Bernardino, Itamar L. de Oliveira, José J. Camata
{"title":"A survey of the methodological process of modeling, inference, and evaluation of gene regulatory networks using scRNA-Seq data","authors":"José Eduardo H. da Silva, Heder S. Bernardino, Itamar L. de Oliveira, José J. Camata","doi":"10.1016/j.biosystems.2025.105464","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of scRNA-Seq sequencing technology has provided unprecedented resolutions in the analysis of gene regulatory networks (GRNs) at the single-cell level. However, new technical and methodological challenges also emerged. Factors such as the large number of zeros reported in expression levels, the biological variation due to the stochastic nature of gene expression, environmental niche, and effects created by the cell cycle make it difficult to correctly interpret the data obtained in the sequencing stage. On the other hand, the development of methods for the inference of GRNs, specifically using scRNA-Seq technology, proved to be of similar quality to random predictors. The lack of adequate pre-processing of gene expression data, including selection steps for subsets of genes of interest, smoothing, and discretization of gene expression, in addition to the different ways of modeling networks and network motifs, are factors that affect the performance of inference approaches. Finally, the lack of knowledge about the ground-truth network and the non-standardization of appropriate metrics to measure the quality of inferred networks make the process of comparing performance between algorithms a major problem, given the unbalanced nature of the data and the interpretation bias caused by the chosen metric. This article brings these issues to light, aiming to show how these factors influence both the inference process and the performance evaluation of inferred networks, through comparative computational experiments and provides suggestions for a more robust methodological process for researchers dealing with inference of GRNs.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"253 ","pages":"Article 105464"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725000747","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of scRNA-Seq sequencing technology has provided unprecedented resolutions in the analysis of gene regulatory networks (GRNs) at the single-cell level. However, new technical and methodological challenges also emerged. Factors such as the large number of zeros reported in expression levels, the biological variation due to the stochastic nature of gene expression, environmental niche, and effects created by the cell cycle make it difficult to correctly interpret the data obtained in the sequencing stage. On the other hand, the development of methods for the inference of GRNs, specifically using scRNA-Seq technology, proved to be of similar quality to random predictors. The lack of adequate pre-processing of gene expression data, including selection steps for subsets of genes of interest, smoothing, and discretization of gene expression, in addition to the different ways of modeling networks and network motifs, are factors that affect the performance of inference approaches. Finally, the lack of knowledge about the ground-truth network and the non-standardization of appropriate metrics to measure the quality of inferred networks make the process of comparing performance between algorithms a major problem, given the unbalanced nature of the data and the interpretation bias caused by the chosen metric. This article brings these issues to light, aiming to show how these factors influence both the inference process and the performance evaluation of inferred networks, through comparative computational experiments and provides suggestions for a more robust methodological process for researchers dealing with inference of GRNs.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.