Cr2O3-x artificial interfacial layer featuring abundant nucleation sites: Facilitating rapid Zn2+ transport and highly reversible Zn anode

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zixiao Nie , Long Wang , Jialei Li, Zhuo Li, Hao Xu, Yonghong Cheng, Yu Chen, Bing Xiao, Xin Xu
{"title":"Cr2O3-x artificial interfacial layer featuring abundant nucleation sites: Facilitating rapid Zn2+ transport and highly reversible Zn anode","authors":"Zixiao Nie ,&nbsp;Long Wang ,&nbsp;Jialei Li,&nbsp;Zhuo Li,&nbsp;Hao Xu,&nbsp;Yonghong Cheng,&nbsp;Yu Chen,&nbsp;Bing Xiao,&nbsp;Xin Xu","doi":"10.1016/j.jcis.2025.137918","DOIUrl":null,"url":null,"abstract":"<div><div>Interfacial engineering offers a promising solution to zinc anode instability, yet most studies focus solely on suppressing side reactions with water, overlooking the critical role of fast zinc ion kinetics. This work investigates the Cr<sub>2</sub>O<sub>3-</sub><em><sub>x</sub></em> artificial interface layer, demonstrating its dual benefits of electrostatic shielding and enhanced Zn<sup>2+</sup> transport kinetics. The Cr<sub>2</sub>O<sub>3-</sub><em><sub>x</sub></em> layer exhibits excellent mechanical stability and hydrophilicity, with its negatively charged surface effectively repelling anions like SO<sub>4</sub><sup>2−</sup> and OH<sup>−</sup> to suppress side reactions. Moreover, the highly active Cr<sub>2</sub>O<sub>3-</sub><em><sub>x</sub></em> layer accelerates Zn<sup>2+</sup> migration, reduces nucleation energy barriers, and promotes uniform zinc deposition by facilitating Zn<sup>2+</sup> detachment from solvated structures. As a result, the Cr<sub>2</sub>O<sub>3-</sub><em><sub>x</sub></em>@Zn anode achieves exceptional cycling stability and remarkable reversibility, with symmetric batteries enduring over 1,800 h at 5 mA cm<sup>−2</sup>. When paired with NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub>, it also demonstrates long cycle life and superior rate performance. This work sheds new light on the development of stable, high-performance zinc anodes.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137918"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013098","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial engineering offers a promising solution to zinc anode instability, yet most studies focus solely on suppressing side reactions with water, overlooking the critical role of fast zinc ion kinetics. This work investigates the Cr2O3-x artificial interface layer, demonstrating its dual benefits of electrostatic shielding and enhanced Zn2+ transport kinetics. The Cr2O3-x layer exhibits excellent mechanical stability and hydrophilicity, with its negatively charged surface effectively repelling anions like SO42− and OH to suppress side reactions. Moreover, the highly active Cr2O3-x layer accelerates Zn2+ migration, reduces nucleation energy barriers, and promotes uniform zinc deposition by facilitating Zn2+ detachment from solvated structures. As a result, the Cr2O3-x@Zn anode achieves exceptional cycling stability and remarkable reversibility, with symmetric batteries enduring over 1,800 h at 5 mA cm−2. When paired with NH4V4O10, it also demonstrates long cycle life and superior rate performance. This work sheds new light on the development of stable, high-performance zinc anodes.
具有丰富成核位的Cr2O3-x人工界面层:有利于Zn2+的快速输运和高可逆的Zn阳极
界面工程为锌阳极不稳定性提供了一个很有前途的解决方案,但大多数研究只关注抑制与水的副反应,忽视了快速锌离子动力学的关键作用。本文研究了Cr2O3-x人工界面层,证明了其静电屏蔽和增强Zn2+输运动力学的双重好处。Cr2O3-x层具有优异的机械稳定性和亲水性,其带负电荷的表面可以有效地排斥阴离子如SO42 -和OH -,从而抑制副反应。此外,高活性的Cr2O3-x层加速了Zn2+的迁移,降低了成核能垒,并通过促进Zn2+从溶剂化结构中脱离来促进锌的均匀沉积。因此,Cr2O3-x@Zn阳极实现了卓越的循环稳定性和显著的可逆性,对称电池在5毫安厘米−2下续航时间超过1800小时。当与NH4V4O10配对时,它也具有较长的循环寿命和优越的速率性能。这项工作为开发稳定、高性能的锌阳极提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信