Seeing beyond vegetation: A comparative occlusion analysis between Multi-View Stereo, Neural Radiance Fields and Gaussian Splatting for 3D reconstruction
{"title":"Seeing beyond vegetation: A comparative occlusion analysis between Multi-View Stereo, Neural Radiance Fields and Gaussian Splatting for 3D reconstruction","authors":"Ivana Petrovska, Boris Jutzi","doi":"10.1016/j.ophoto.2025.100089","DOIUrl":null,"url":null,"abstract":"<div><div>Image-based 3D reconstruction offers realistic scene representation for applications that require accurate geometric information. Although the assumption that images are simultaneously captured, perfectly posed and noise-free simplifies the 3D reconstruction, this rarely holds in real-world settings. A real-world scene comprises multiple objects which obstruct each other and certain object parts are occluded, thus it can be challenging to generate a complete and accurate geometry. Being a part of our environment, we are particularly interested in vegetation that often obscures important structures, leading to incomplete reconstruction of the underlying features. In this contribution, we present a comparative analysis of the geometry behind vegetation occlusions reconstructed by traditional Multi-View Stereo (MVS) and radiance field methods, namely: Neural Radiance Fields (NeRFs), 3D Gaussian Splatting (3DGS) and 2D Gaussian Splatting (2DGS). Excluding certain image parts and investigating how different level of vegetation occlusions affect the geometric reconstruction, we consider Synthetic masks with different occlusion coverage of 10% (Very Sparse), 30% (Sparse), 50% (Medium), 70% (Dense) and 90% (Very Dense). To additionally demonstrate the impact of spatially consistent 3D occlusions, we use Natural masks (up to 35%) where the vegetation is stationary in the 3D scene, but relative to the view-point. Our investigations are based on real-world scenarios; one occlusion-free indoor scenario, on which we apply the Synthetic masks and one outdoor scenario, from which we derive the Natural masks. The qualitative and quantitative 3D evaluation is based on point cloud comparison against a ground truth mesh addressing accuracy and completeness. The conducted experiments and results demonstrate that although MVS shows lowest accuracy errors in both scenarios, the completeness manifests a sharp decline as the occlusion percentage increases, eventually failing under Very Dense masks. NeRFs manifest robustness in the reconstruction with highest completeness considering masks, although the accuracy proportionally decreases with increasing the occlusions. 2DGS achieves second best accuracy results outperforming NeRFs and 3DGS, indicating a consistent performance across different occlusion scenarios. Additionally, by using MVS for initialization, 3DGS and 2DGS completeness improves without significantly sacrificing the accuracy, due to the more densely reconstructed homogeneous areas. We demonstrate that radiance field methods can compete against traditional MVS, showing robust performance for a complete reconstruction under vegetation occlusions.</div></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"16 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393225000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Image-based 3D reconstruction offers realistic scene representation for applications that require accurate geometric information. Although the assumption that images are simultaneously captured, perfectly posed and noise-free simplifies the 3D reconstruction, this rarely holds in real-world settings. A real-world scene comprises multiple objects which obstruct each other and certain object parts are occluded, thus it can be challenging to generate a complete and accurate geometry. Being a part of our environment, we are particularly interested in vegetation that often obscures important structures, leading to incomplete reconstruction of the underlying features. In this contribution, we present a comparative analysis of the geometry behind vegetation occlusions reconstructed by traditional Multi-View Stereo (MVS) and radiance field methods, namely: Neural Radiance Fields (NeRFs), 3D Gaussian Splatting (3DGS) and 2D Gaussian Splatting (2DGS). Excluding certain image parts and investigating how different level of vegetation occlusions affect the geometric reconstruction, we consider Synthetic masks with different occlusion coverage of 10% (Very Sparse), 30% (Sparse), 50% (Medium), 70% (Dense) and 90% (Very Dense). To additionally demonstrate the impact of spatially consistent 3D occlusions, we use Natural masks (up to 35%) where the vegetation is stationary in the 3D scene, but relative to the view-point. Our investigations are based on real-world scenarios; one occlusion-free indoor scenario, on which we apply the Synthetic masks and one outdoor scenario, from which we derive the Natural masks. The qualitative and quantitative 3D evaluation is based on point cloud comparison against a ground truth mesh addressing accuracy and completeness. The conducted experiments and results demonstrate that although MVS shows lowest accuracy errors in both scenarios, the completeness manifests a sharp decline as the occlusion percentage increases, eventually failing under Very Dense masks. NeRFs manifest robustness in the reconstruction with highest completeness considering masks, although the accuracy proportionally decreases with increasing the occlusions. 2DGS achieves second best accuracy results outperforming NeRFs and 3DGS, indicating a consistent performance across different occlusion scenarios. Additionally, by using MVS for initialization, 3DGS and 2DGS completeness improves without significantly sacrificing the accuracy, due to the more densely reconstructed homogeneous areas. We demonstrate that radiance field methods can compete against traditional MVS, showing robust performance for a complete reconstruction under vegetation occlusions.