Leng Han , Zhichong Wang , Miao He , Yajia Liu , Xiongkui He
{"title":"PWM offline variable application based on UAV remote sensing 3D prescription map","authors":"Leng Han , Zhichong Wang , Miao He , Yajia Liu , Xiongkui He","doi":"10.1016/j.aiia.2025.01.011","DOIUrl":null,"url":null,"abstract":"<div><div>Precision application in orchards enhancing deposition uniformity and environmental sustainability by accurately matching nozzle output with canopy parameters. This study provides a pipeline for creating 3D prescription maps using a UAV and performing offline variable application. It also evaluates the accuracy of ground altitude measurements at various flight heights. At a flight height of 30 m, with a three-dimensional reconstruction method without phase-control points, the root mean square error (RMSE) for ground altitude measurement was 0.214 m and the mean absolute error (MAE) was 0.211 m; for the canopy area, these values were 0.591 m and 0.541 m, respectively. As flight height increased, the accuracy of altitude measurements declined and tended to be underestimated. Moreover, during offline variable spraying, the shape of the spray area influenced deposition accuracy, with collision detection area of a line segment achieving greater precision than conical ones. Field tests showed that the offline variable application method reduced pesticide usage by 32.43 % and enhanced spray uniformity. This newly developed process does not require costly sensors on each sprayer and has potential for field applications.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 3","pages":"Pages 496-507"},"PeriodicalIF":12.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Precision application in orchards enhancing deposition uniformity and environmental sustainability by accurately matching nozzle output with canopy parameters. This study provides a pipeline for creating 3D prescription maps using a UAV and performing offline variable application. It also evaluates the accuracy of ground altitude measurements at various flight heights. At a flight height of 30 m, with a three-dimensional reconstruction method without phase-control points, the root mean square error (RMSE) for ground altitude measurement was 0.214 m and the mean absolute error (MAE) was 0.211 m; for the canopy area, these values were 0.591 m and 0.541 m, respectively. As flight height increased, the accuracy of altitude measurements declined and tended to be underestimated. Moreover, during offline variable spraying, the shape of the spray area influenced deposition accuracy, with collision detection area of a line segment achieving greater precision than conical ones. Field tests showed that the offline variable application method reduced pesticide usage by 32.43 % and enhanced spray uniformity. This newly developed process does not require costly sensors on each sprayer and has potential for field applications.