Advancing urban connectivity measurements for SDG 11.a with SDGSAT-1 nighttime light data in urban agglomerations

IF 7.6 Q1 REMOTE SENSING
Zhuoran Lv , Huadong Guo , Lu Zhang , Dong Liang , Lingxuan Gong , Yiming Liu
{"title":"Advancing urban connectivity measurements for SDG 11.a with SDGSAT-1 nighttime light data in urban agglomerations","authors":"Zhuoran Lv ,&nbsp;Huadong Guo ,&nbsp;Lu Zhang ,&nbsp;Dong Liang ,&nbsp;Lingxuan Gong ,&nbsp;Yiming Liu","doi":"10.1016/j.jag.2025.104611","DOIUrl":null,"url":null,"abstract":"<div><div>Urban agglomerations, formed by multiple cities connected through transportation and information networks, play a pivotal role in the sustainable development of human settlements and communities. This study introduces a data-driven approach to analyze urban connectivity using high-precision 10-meter panchromatic nighttime light (NTL) data from SDGSAT-1, integrated with OpenStreetMap (OSM) road data, to support SDG 11.a for sustainable cities and communities. We develop image enhancement and network extraction methods to accurately detect urban road networks and assess connectivity. By incorporating geographical adjustment factors and integrating urban geographic information, we construct a series of indicators to evaluate the resource flow capacities of urban agglomerations using social network models. The study focuses on three major urban agglomerations: the Chengdu-Chongqing Urban Agglomeration (CCUA), the Shandong Peninsula Urban Agglomeration (SPUA), and Liaoning Province (Liaoning). Through these case studies, we extract urban connectivity networks and analyze their resource flow capabilities. This approach provides valuable insights into the intensity and efficiency of urban resource circulation, offering data-driven support for fostering sustainable urban development in alignment with SDG 11.a.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"140 ","pages":"Article 104611"},"PeriodicalIF":7.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225002584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Urban agglomerations, formed by multiple cities connected through transportation and information networks, play a pivotal role in the sustainable development of human settlements and communities. This study introduces a data-driven approach to analyze urban connectivity using high-precision 10-meter panchromatic nighttime light (NTL) data from SDGSAT-1, integrated with OpenStreetMap (OSM) road data, to support SDG 11.a for sustainable cities and communities. We develop image enhancement and network extraction methods to accurately detect urban road networks and assess connectivity. By incorporating geographical adjustment factors and integrating urban geographic information, we construct a series of indicators to evaluate the resource flow capacities of urban agglomerations using social network models. The study focuses on three major urban agglomerations: the Chengdu-Chongqing Urban Agglomeration (CCUA), the Shandong Peninsula Urban Agglomeration (SPUA), and Liaoning Province (Liaoning). Through these case studies, we extract urban connectivity networks and analyze their resource flow capabilities. This approach provides valuable insights into the intensity and efficiency of urban resource circulation, offering data-driven support for fostering sustainable urban development in alignment with SDG 11.a.
推进城市连通性测量以实现可持续发展目标11。a使用SDGSAT-1在城市群的夜间灯光数据
由多个城市通过交通和信息网络连接而形成的城市群在人类住区和社区的可持续发展中发挥着关键作用。本研究引入了一种数据驱动的方法,利用SDGSAT-1的高精度10米全色夜间灯光(NTL)数据,结合OpenStreetMap (OSM)道路数据,分析城市连通性,以支持可持续发展目标11。A代表可持续城市和社区。我们开发了图像增强和网络提取方法,以准确地检测城市道路网络并评估连通性。通过引入地理调整因子,整合城市地理信息,构建了一系列评价城市群资源流动能力的社会网络模型指标。研究的重点是三个主要城市群:成渝城市群(CCUA)、山东半岛城市群(SPUA)和辽宁省(辽宁)。通过这些案例研究,我们提取了城市连接网络,并分析了其资源流动能力。这种方法为了解城市资源流通的强度和效率提供了宝贵的见解,为促进符合可持续发展目标11.a的可持续城市发展提供了数据驱动的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信