Structure-preserving nodal DG method for the Euler equations with gravity: well-balanced, entropy stable, and positivity preserving

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yuchang Liu , Wei Guo , Yan Jiang , Mengping Zhang
{"title":"Structure-preserving nodal DG method for the Euler equations with gravity: well-balanced, entropy stable, and positivity preserving","authors":"Yuchang Liu ,&nbsp;Wei Guo ,&nbsp;Yan Jiang ,&nbsp;Mengping Zhang","doi":"10.1016/j.jcp.2025.114095","DOIUrl":null,"url":null,"abstract":"<div><div>We propose an entropy stable and positivity preserving discontinuous Galerkin (DG) scheme for the Euler equations with gravity, which is also well-balanced for hydrostatic equilibrium states. To achieve these properties, we utilize the nodal DG framework and carefully design the source term discretization using entropy conservative fluxes. Furthermore, we demonstrate that the proposed methodology is compatible with a positivity preserving scaling limiter, ensuring positivity of density and pressure under an appropriate CFL condition. To the best of our knowledge, this is the first DG scheme to simultaneously achieve these three properties with theoretical justification. Numerical examples further demonstrate its robustness and efficiency.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"537 ","pages":"Article 114095"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500378X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an entropy stable and positivity preserving discontinuous Galerkin (DG) scheme for the Euler equations with gravity, which is also well-balanced for hydrostatic equilibrium states. To achieve these properties, we utilize the nodal DG framework and carefully design the source term discretization using entropy conservative fluxes. Furthermore, we demonstrate that the proposed methodology is compatible with a positivity preserving scaling limiter, ensuring positivity of density and pressure under an appropriate CFL condition. To the best of our knowledge, this is the first DG scheme to simultaneously achieve these three properties with theoretical justification. Numerical examples further demonstrate its robustness and efficiency.
欧拉方程的保结构节点DG方法:平衡、熵稳定、保正
我们提出了一个具有重力的欧拉方程的熵稳定且保持正的不连续Galerkin (DG)格式,该格式对于流体静力平衡状态也是很好的平衡的。为了实现这些特性,我们利用节点DG框架,并使用熵保守通量仔细设计源项离散化。此外,我们证明了所提出的方法与保持正性的尺度限制器兼容,在适当的CFL条件下确保密度和压力的正性。据我们所知,这是第一个DG方案同时实现这三个性质与理论证明。数值算例进一步验证了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信