Deep-learning based automated pancreas segmentation on CT scans of chronic pancreatitis patients

IF 3.2 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Surenth Nalliah , Esben Bolvig Mark , Marjolein Henrieke Liedenbaum , Mille Kristence Lillien Mosegaard , Tobias Hellström , Erlend Hodneland , Ingfrid Helene Salvesen Haldorsen , Trond Engjom , Asbjørn Mohr Drewes , Søren Schou Olesen , Jens Brøndum Frøkjær
{"title":"Deep-learning based automated pancreas segmentation on CT scans of chronic pancreatitis patients","authors":"Surenth Nalliah ,&nbsp;Esben Bolvig Mark ,&nbsp;Marjolein Henrieke Liedenbaum ,&nbsp;Mille Kristence Lillien Mosegaard ,&nbsp;Tobias Hellström ,&nbsp;Erlend Hodneland ,&nbsp;Ingfrid Helene Salvesen Haldorsen ,&nbsp;Trond Engjom ,&nbsp;Asbjørn Mohr Drewes ,&nbsp;Søren Schou Olesen ,&nbsp;Jens Brøndum Frøkjær","doi":"10.1016/j.ejrad.2025.112175","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>This study aimed to develop an artificial intelligence (AI)-based segmentation model for accurate delineation of the complex pancreas in patients with chronic pancreatitis (CP) using computer tomography (CT) scans obtained during routine clinical work-up. Validation was performed with internal and external test datasets. A secondary objective was to evaluate the impact of visceral fat area (at the third lumbar level), pancreas volume, and CT parameters on model performance.</div></div><div><h3>Methods</h3><div>This multicenter study included 550 retrospectively collected CT scans from Aalborg (n = 373; 224 CP, 150 healthy subjects) and Bergen Hospitals (n = 97 CP), and an online dataset from the National Institutes of Health (NIH) (n = 80, healthy subjects). The Aalborg dataset was divided into a training cohort (n = 326) and an internal test set (n = 47), while the Bergen and NIH datasets served as external test sets. The AI model employed the nnU-Net architecture, with performance evaluated using the Sørensen-Dice index. Correlations with visceral fat, pancreas volume, and CT parameters were assessed.</div></div><div><h3>Results</h3><div>The pancreas segmentation AI model achieved a Dice score of 0.85 ± 0.08 on the Aalborg test set, 0.79 ± 0.19 on the Bergen dataset, and 0.79 ± 0.18 on the NIH dataset. Visceral fat and pancreas volume positively correlated with Dice scores (r = 0.45 and r = 0.53, both <em>p</em> &lt; 0.0001), while CT parameters had no significant impact (all <em>p</em>-values &gt; 0.07).</div></div><div><h3>Conclusion</h3><div>The AI model demonstrated high accuracy and robustness in pancreas segmentation of both CP patients and healthy subjects, and across diverse sites and scanners, suggesting its potential for clinical application.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"189 ","pages":"Article 112175"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X2500261X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

This study aimed to develop an artificial intelligence (AI)-based segmentation model for accurate delineation of the complex pancreas in patients with chronic pancreatitis (CP) using computer tomography (CT) scans obtained during routine clinical work-up. Validation was performed with internal and external test datasets. A secondary objective was to evaluate the impact of visceral fat area (at the third lumbar level), pancreas volume, and CT parameters on model performance.

Methods

This multicenter study included 550 retrospectively collected CT scans from Aalborg (n = 373; 224 CP, 150 healthy subjects) and Bergen Hospitals (n = 97 CP), and an online dataset from the National Institutes of Health (NIH) (n = 80, healthy subjects). The Aalborg dataset was divided into a training cohort (n = 326) and an internal test set (n = 47), while the Bergen and NIH datasets served as external test sets. The AI model employed the nnU-Net architecture, with performance evaluated using the Sørensen-Dice index. Correlations with visceral fat, pancreas volume, and CT parameters were assessed.

Results

The pancreas segmentation AI model achieved a Dice score of 0.85 ± 0.08 on the Aalborg test set, 0.79 ± 0.19 on the Bergen dataset, and 0.79 ± 0.18 on the NIH dataset. Visceral fat and pancreas volume positively correlated with Dice scores (r = 0.45 and r = 0.53, both p < 0.0001), while CT parameters had no significant impact (all p-values > 0.07).

Conclusion

The AI model demonstrated high accuracy and robustness in pancreas segmentation of both CP patients and healthy subjects, and across diverse sites and scanners, suggesting its potential for clinical application.
基于深度学习的慢性胰腺炎患者CT扫描胰腺自动分割
本研究旨在开发一种基于人工智能(AI)的分割模型,利用常规临床检查中获得的计算机断层扫描(CT)扫描,准确描绘慢性胰腺炎(CP)患者的复杂胰腺。使用内部和外部测试数据集进行验证。次要目的是评估内脏脂肪面积(第三腰椎水平)、胰腺体积和CT参数对模型性能的影响。方法本多中心研究纳入了550例回顾性收集的奥尔堡CT扫描(n = 373;224名CP, 150名健康受试者)和卑尔根医院(n = 97名CP),以及来自美国国立卫生研究院(NIH)的在线数据集(n = 80,健康受试者)。奥尔堡数据集分为训练队列(n = 326)和内部测试集(n = 47),而卑尔根和NIH数据集作为外部测试集。人工智能模型采用nnU-Net架构,并使用Sørensen-Dice指数进行性能评估。评估与内脏脂肪、胰腺体积和CT参数的相关性。结果胰腺分割AI模型在Aalborg测试集上的Dice得分为0.85±0.08,在Bergen数据集上为0.79±0.19,在NIH数据集上为0.79±0.18。内脏脂肪和胰腺体积与Dice评分呈正相关(r = 0.45和r = 0.53, p <;0.0001),而CT参数无显著影响(所有p值>;0.07)。结论人工智能模型对CP患者和健康受试者的胰腺分割具有较高的准确性和鲁棒性,并且可以跨越不同的部位和扫描仪,具有临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信