A review of machine learning techniques for urban resilience research: The application and progress of different machine learning techniques in assessing and enhancing urban resilience

IF 3.6
Yu Chen , Wenxing You , Lu Ou , Hui Tang
{"title":"A review of machine learning techniques for urban resilience research: The application and progress of different machine learning techniques in assessing and enhancing urban resilience","authors":"Yu Chen ,&nbsp;Wenxing You ,&nbsp;Lu Ou ,&nbsp;Hui Tang","doi":"10.1016/j.sasc.2025.200269","DOIUrl":null,"url":null,"abstract":"<div><div>Urban resilience evaluates systems’ capacities to prepare for, adapt to, absorb, and recover from disruptions. Evaluation frameworks incorporate metrics like recovery speed, adaptive ability, and absorptive capacity. Assessing critical infrastructure interdependencies is challenging yet vital to limit failure propagation. While static assessments, multi-layer frameworks, and software like Hazus are used, limitations persist. Machine learning often focuses on infrastructure data for recovery monitoring. A common workflow entails acquiring and organizing data, then applying supervised, unsupervised, or reinforcement learning models. Supervised learning uses labeled data while unsupervised learning detects patterns in unlabeled data. Reinforcement learning optimizes rewards through trial-and-error interactions. Machine learning assists in meeting intensifying urbanization and climate change challenges. Leveraging advances in sensors, IoT, and computing enables tasks like image labeling and semantic segmentation. The techniques facilitate resilience through real-time data analytics for informed decision-making and responsive disaster management.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200269"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941925000870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Urban resilience evaluates systems’ capacities to prepare for, adapt to, absorb, and recover from disruptions. Evaluation frameworks incorporate metrics like recovery speed, adaptive ability, and absorptive capacity. Assessing critical infrastructure interdependencies is challenging yet vital to limit failure propagation. While static assessments, multi-layer frameworks, and software like Hazus are used, limitations persist. Machine learning often focuses on infrastructure data for recovery monitoring. A common workflow entails acquiring and organizing data, then applying supervised, unsupervised, or reinforcement learning models. Supervised learning uses labeled data while unsupervised learning detects patterns in unlabeled data. Reinforcement learning optimizes rewards through trial-and-error interactions. Machine learning assists in meeting intensifying urbanization and climate change challenges. Leveraging advances in sensors, IoT, and computing enables tasks like image labeling and semantic segmentation. The techniques facilitate resilience through real-time data analytics for informed decision-making and responsive disaster management.
城市弹性研究中的机器学习技术综述:不同机器学习技术在评估和增强城市弹性中的应用与进展
城市恢复力评估系统准备、适应、吸收和从中断中恢复的能力。评估框架包括恢复速度、适应能力和吸收能力等指标。评估关键基础设施的相互依赖性具有挑战性,但对于限制故障传播至关重要。虽然使用了静态评估、多层框架和像Hazus这样的软件,但局限性仍然存在。机器学习通常侧重于恢复监控的基础设施数据。一个常见的工作流需要获取和组织数据,然后应用有监督的、无监督的或强化的学习模型。监督学习使用标记数据,而无监督学习检测未标记数据中的模式。强化学习通过试错互动优化奖励。机器学习有助于应对日益加剧的城市化和气候变化挑战。利用传感器、物联网和计算的进步,可以完成图像标记和语义分割等任务。这些技术通过实时数据分析,促进知情决策和响应式灾害管理,从而提高抗灾能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信