From Weak Interactions to High Stability: Deciphering the Streptavidin–Biotin Interaction through NMR and Computational Analysis

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Aleksandra L. Ptaszek*, Sarah Kratzwald, Filip Sagan, Mario Migotti, Pedro A. Sánchez-Murcia, Robert Konrat and Gerald Platzer*, 
{"title":"From Weak Interactions to High Stability: Deciphering the Streptavidin–Biotin Interaction through NMR and Computational Analysis","authors":"Aleksandra L. Ptaszek*,&nbsp;Sarah Kratzwald,&nbsp;Filip Sagan,&nbsp;Mario Migotti,&nbsp;Pedro A. Sánchez-Murcia,&nbsp;Robert Konrat and Gerald Platzer*,&nbsp;","doi":"10.1021/acs.jpcb.5c0015510.1021/acs.jpcb.5c00155","DOIUrl":null,"url":null,"abstract":"<p >Understanding weak interactions in protein–ligand complexes is essential for advancing drug design. Here, we combine experimental and quantum mechanical approaches to study the streptavidin–biotin complex, one of the strongest interacting protein–ligand systems. Using a monomeric streptavidin mutant, we analyze <sup>1</sup>H NMR chemical shift perturbations (CSPs) of biotin upon binding, identifying remarkable upfield shifts of up to −3.2 ppm. Quantum chemical calculations attribute these shifts primarily to aromatic ring currents, with additional contributions from charge transfer effects linked to weak interactions. The agreement between experimental and computed chemical shifts validated the X-ray structure as a reliable basis for detailed computational analyses. Energy decomposition analysis reveals that electrostatics dominate the biotin–streptavidin interaction, complemented by significant orbital and dispersion contributions. Notably, weak noncovalent interactions, such as CH···S, CH···π, and CH···HC contacts, driven by London dispersion forces, contribute ∼44% to the complex’s stability.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 20","pages":"4917–4928 4917–4928"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcb.5c00155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c00155","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding weak interactions in protein–ligand complexes is essential for advancing drug design. Here, we combine experimental and quantum mechanical approaches to study the streptavidin–biotin complex, one of the strongest interacting protein–ligand systems. Using a monomeric streptavidin mutant, we analyze 1H NMR chemical shift perturbations (CSPs) of biotin upon binding, identifying remarkable upfield shifts of up to −3.2 ppm. Quantum chemical calculations attribute these shifts primarily to aromatic ring currents, with additional contributions from charge transfer effects linked to weak interactions. The agreement between experimental and computed chemical shifts validated the X-ray structure as a reliable basis for detailed computational analyses. Energy decomposition analysis reveals that electrostatics dominate the biotin–streptavidin interaction, complemented by significant orbital and dispersion contributions. Notably, weak noncovalent interactions, such as CH···S, CH···π, and CH···HC contacts, driven by London dispersion forces, contribute ∼44% to the complex’s stability.

从弱相互作用到高稳定性:通过核磁共振和计算分析解读链霉亲和素-生物素相互作用
了解蛋白质-配体复合物的弱相互作用对于推进药物设计至关重要。在这里,我们结合实验和量子力学的方法来研究链亲和素-生物素复合物,最强的相互作用的蛋白质配体系统之一。利用单体链霉亲和素突变体,我们分析了生物素结合时的1H NMR化学位移扰动(CSPs),发现显著的上移高达- 3.2 ppm。量子化学计算将这些变化主要归因于芳香环电流,还有与弱相互作用相关的电荷转移效应的额外贡献。实验和计算的化学位移之间的一致性验证了x射线结构作为详细计算分析的可靠基础。能量分解分析表明,静电在生物素-链亲和素相互作用中占主导地位,并补充了显著的轨道和色散贡献。值得注意的是,由伦敦色散力驱动的弱非共价相互作用,如CH··S、CH··π和CH··HC接触,对配合物的稳定性贡献了约44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信