Leon L. Hsieh, Elizabeth A. Thompson, Nirvani P. Jairam, Katerina Roznik, Alexis Figueroa, Tihitina Aytenfisu, Weiqiang Zhou, Naina Gour, Kuan-Hao Chao, Aaron M. Milstone, Emily Egbert, Franco D’Alessio, Petros C. Karakousis, Alvaro Ordoñez, Eileen P. Scully, Andrew Pekosz, Andrew H. Karaba, Andrea L. Cox
{"title":"SARS-CoV-2 induces neutrophil degranulation and differentiation into myeloid-derived suppressor cells associated with severe COVID-19","authors":"Leon L. Hsieh, Elizabeth A. Thompson, Nirvani P. Jairam, Katerina Roznik, Alexis Figueroa, Tihitina Aytenfisu, Weiqiang Zhou, Naina Gour, Kuan-Hao Chao, Aaron M. Milstone, Emily Egbert, Franco D’Alessio, Petros C. Karakousis, Alvaro Ordoñez, Eileen P. Scully, Andrew Pekosz, Andrew H. Karaba, Andrea L. Cox","doi":"10.1126/scitranslmed.adn7527","DOIUrl":null,"url":null,"abstract":"<div >Severe COVID-19 presents with a distinct immunological profile, characterized by elevated neutrophil and reduced lymphocyte counts, seen commonly in fungal and bacterial infections. This study demonstrates that patients hospitalized with COVID-19 show evidence of neutrophil degranulation and have increased expression of neutrophil surface lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a marker of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Both early LOX-1 and programmed death-ligand 1 (PD-L1) expression on neutrophils were associated with development of severe disease. To determine whether tissue damage or inflammation is required to induce PMN-MDSCs or whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly activates neutrophils to become PMN-MDSCs, we incubated healthy human neutrophils with SARS-CoV-2. SARS-CoV-2 rapidly induced LOX-1 surface expression in healthy neutrophils independent of productive infection. LOX-1 induction was dependent on granule exocytosis and promoted up-regulation of reactive oxygen species, CD63, and PD-L1, enabling LOX-1<sup>+</sup> neutrophils to suppress autologous T cell proliferation in vitro. These results support a role for PMN-MDSCs in mediating severe COVID-19, and inhibition of PD-L1 represents a potential therapeutic strategy for enhancing the immune response in acute SARS-CoV-2 infection.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 799","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.adn7527","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adn7527","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe COVID-19 presents with a distinct immunological profile, characterized by elevated neutrophil and reduced lymphocyte counts, seen commonly in fungal and bacterial infections. This study demonstrates that patients hospitalized with COVID-19 show evidence of neutrophil degranulation and have increased expression of neutrophil surface lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a marker of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Both early LOX-1 and programmed death-ligand 1 (PD-L1) expression on neutrophils were associated with development of severe disease. To determine whether tissue damage or inflammation is required to induce PMN-MDSCs or whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly activates neutrophils to become PMN-MDSCs, we incubated healthy human neutrophils with SARS-CoV-2. SARS-CoV-2 rapidly induced LOX-1 surface expression in healthy neutrophils independent of productive infection. LOX-1 induction was dependent on granule exocytosis and promoted up-regulation of reactive oxygen species, CD63, and PD-L1, enabling LOX-1+ neutrophils to suppress autologous T cell proliferation in vitro. These results support a role for PMN-MDSCs in mediating severe COVID-19, and inhibition of PD-L1 represents a potential therapeutic strategy for enhancing the immune response in acute SARS-CoV-2 infection.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.